
Equilibrium Thermodynamics III:

Free Energies [tsc3]

We continue the development of the formalism of equilibrium thermodynam-
ics for a fluid system with a single mode of work performance: change of
volume V against pressure p.

It is straightforward to replace the extensive variable, X = V , and intensive
variable, Y = −p, by another conjugate pair (e.g. X = M and Y = H) for
a different mode of work performance.

Fundamental equation of thermodynamics:

The first and second laws of thermodynamics imply that

dU = TdS − pdV + µdN (1)

with (
∂U

∂S

)
V,N

= T,

(
∂U

∂V

)
S,N

= −p,
(
∂U

∂N

)
S,V

= µ

is the exact differential of a function U(S, V,N).

Upon integration, the differential (1) connects two points in the 3-dimensional
space spanned by S, V,N via a reversible process along a specific path.

The graph shows a specific path: first ∆S, then ∆V , and last ∆N . However,
the integral is path-independent.
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Only quasi-static processes are represented by paths in (S, V,N)-space. This
includes some, but not all irreversible processes.

For irreversible processes, dU < TdS − pdV + µdN holds.
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U, S, V,N are all extensive state variables.

Consequence: U(S, V,N) is a 1st order homogeneous function:

U(λS, λV, λN) = λU(S, V,N), λ > 0.

Set λ = 1 + ε with ε� 1 and expand to first order:

U [(1 + ε)S, (1 + ε)V, (1 + ε)N ] = U +
∂U

∂S︸︷︷︸
T

εS +
∂U

∂V︸︷︷︸
−p

εV +
∂U

∂N︸︷︷︸
µ

εN = (1 + ε)U.

The fundamental equation of thermodynamics (Euler’s equation) follows:

U = TS − pV + µN. (2)

The total differential of (2),

dU = TdS + SdT − pdV − V dp+ µdN +Ndµ, (3)

disregards the functional relations contained in the differential (1) in the form
of the partial derivatives that guarantee integrability.

We can extract these relations from the difference between (1) from (3),
which is the Gibbs-Duhem equation,

SdT − V dp+Ndµ = 0,

a differential relationship between the intensive variables T, p, µ. It can be
integrated, for example, into a function µ(T, p).

In general, a system specified by m independent extensive variables possesses
m− 1 independent intensive variables.
Example for m = 3: S, V,N (extensive); S/N, V/N or p, T (intensive).

The complete specification of a thermodynamic system must involve at least
one extensive variable, specifying the size of the system.

At fixed S, V,N any spontaneous process lowers the internal energy, dU < 0.
This is implied by the inequality, dU < TdS−pdV +µdN , established earlier
for irreversible processes.

The absence of spontaneous processes means that thermal equilibrium has
been reached. Here the internal energy U assumes the lowest accessible value
for fixed S, V,N .
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Analogy with mechanical equilibrium:

A physical pendulum in librational motion will reach mechanical equilibrium
in state of minimum (gravitational) potential energy.

A harmonic oscillator in motion will reach mechanical equilibrium in a state
of minimum (elastic) potential energy .

In both mechanical systems, dissipative forces (air resistance and friction)
lead the way toward mechanical equilibrium.

Quite generally, mechanical equilibrium states can be identified as those that
minimize the potential energy for given constraints.

For example, a rope with its ends fixed hangs (at mechanical equilibrium) in
a shape that minimizes its gravitational potential energy.
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The internal energy U plays the role of a thermodynamic potential. For
given constraints S, V,N , it assumes the lowest accessible value at thermal
equilibrium.

Free energy in a mechanical system:

Consider again a mechanical system such as the physical pendulum or, more
generally, a massive object in some external potential.

– Energy can be stored in the mechanical system when some agent does
work on it, e.g. by quasi-statically pulling the pendulum bob to a
higher elevation.

– If the work involves only conservative forces, then all energy added can
be retrieved as work performed by the system, e.g. by quasi-statically
releasing the pendulum bob to the original lower elevation.

– If the work done also involves dissipative forces, e.g. air resistance
or friction, then only part of the energy added is retrievable as work
performed by the system.

– The retrievable part of the energy stored in the mechanical system is a
potential energy. The fact that it can be extracted at no cost makes it
a free energy.
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Free energy in a thermodynamic system:

Consider a thermodynamic system in contact with a work source and a heat
reservoir. The example suggests a gas in a cylinder with a movable piston.

– Energy can be stored in the thermodynamic system when some agent
does work on it, e.g. by pushing in the piston.

– If the work is done reversibly, then all the energy added can be retrieved
as work performed by the system. If the piston is pushed in quasi-
staticallly, the heat-flow from the gas to the reservoir is not wasteful
and thus reversible.

– If the work is done irreversibly, e.g. by allowing a temperature differ-
ence between the gas and the heat bath, then only part of the energy
added is retrievable as work performed by the system.

– The energy stored and retrievable as work is called free energy.

– The free energy stored in or retrieved from a thermodynamic system is
expressed by a thermodynamic potential.

– The choice of thermodynamic potential depends on the constraints im-
posed on the system during storage and retrieval of free energy.

Thermodynamic potentials for fluid system:

List of the five most common choices.

– Internal energy : U(S, V,N) = TS − pV + µN .

– Enthalpy : E(S, p,N) = U + pV = TS + µN .

– Helmholtz free energy : A(T, V,N) = U − TS = −pV + µN .

– Gibbs free energy : G(T, p,N) = U − TS + pV = µN .

– Grand potential : Ω(T, V, µ) = U − TS − µN = −pV .

There is no agreement on the use of symbols for thermodynamic potentials.

E is often used for internal energy and H for enthalpy. The Helmholtz free
energy is often denoted by F .
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For other thermodynamic systems, the conjugate pair of variables p, V must
be replaced appropriately, some times with a change in sign.

In magnetic systems, for example, we must interchange volume V by mag-
netization M and negative pressure −p by magnetic field H.

Differentials of thermodynamic potentials:

dU = TdS − pdV + µdN , dE = TdS + V dp+ µdN ,

dA = −SdT − pdV + µdN , dG = −SdT + V dp+ µdN ,

dΩ = −SdT−pdV −Ndµ, Magnet: −pdV → HdM, V dp→ −MdH.

Facts about thermodynamic potentials:

– All thermodynamic potentials of a system are related to each other via
Legendre transform [tln77].

– Every thermodynamic potential has its distinct set of natural indepen-
dent variables.

– Each thermodynamic potential encodes a complete macroscopic de-
scription of a thermodynamic system. All thermodynamic properties
can be inferred from any thermodynamic potentials.

– Any quantity U,E,A,G,Ω which is not expressed as a function of its
natural independent variables is not a thermodynamic potential. Such
quantities contain only partial thermodynamic information.

– In thermodynamics, thermodynamic potentials are inferred from em-
pirical information (equations of state, response functions).

– In statistical mechanics, thermodynamic potentials are derived from
microscopic information (interaction Hamiltonian).

– Any spontaneous i.e. irreversible process at constant values of the natu-
ral independent variables is accompanied by a decrease of the associated
thermodynamic potential.

– The list of total differentials pertains to reversible processes. For irre-
versible processes, “=” must be replaced by “<”.

– The equilibrium state for fixed values of a set of natural independent
variables is the state where the associated thermodynamic potential is
a minimum.

– An alternative set of thermodynamic potentials with similar attributes
and different combinations of variables is also in common use [tln9].
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Thermodynamic functions (for fluid system):

First partial derivatives of thermodynamic potentials with respect to natural
independent variables are named thermodynamic functions.

Entropy : S = −
(
∂A

∂T

)
V,N

= −
(
∂G

∂T

)
p,N

= −
(
∂Ω

∂T

)
V,µ

.

Temperature: T =

(
∂U

∂S

)
V,N

=

(
∂E

∂S

)
p,N

.

Volume: V =

(
∂E

∂p

)
S,N

=

(
∂G

∂p

)
T,N

.

Pressure: p = −
(
∂U

∂V

)
S,N

= −
(
∂A

∂V

)
T,N

= −
(
∂Ω

∂V

)
T,µ

.

Number of particles : N = −
(
∂Ω

∂µ

)
T,V

.

Chemical potential : µ =

(
∂U

∂N

)
S,V

=

(
∂E

∂N

)
S,p

=

(
∂A

∂N

)
T,V

=

(
∂G

∂N

)
T,p

.

Substitutions for magnetic system:

The volume V is replaced by magnetization M and the negative pressure −p
by the magnetic field H.

Entropy : S = −
(
∂A

∂T

)
M,N

= −
(
∂G

∂T

)
H,N

= −
(
∂Ω

∂T

)
M,µ

.

Temperature: T =

(
∂U

∂S

)
M,N

=

(
∂E

∂S

)
H,N

.

Magnetization: M = −
(
∂E

∂H

)
S,N

= −
(
∂G

∂H

)
T,N

.

Magnetic field : H = −
(
∂U

∂M

)
S,N

= −
(
∂A

∂M

)
T,N

= −
(
∂Ω

∂M

)
T,µ

.

Number of particles : N = −
(
∂Ω

∂µ

)
T,M

.

Chemical potential : µ =

(
∂U

∂N

)
S,M

=

(
∂E

∂N

)
S,H

=

(
∂A

∂N

)
T,M

=

(
∂G

∂N

)
T,H

.
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Maxwell’s relations:

Thermodynamic potentials are state variables. Their differentials are exact.
Maxwell’s relations are integrability conditions of exact differentials.

Lists of the most important Maxwell relations:

Fluid system:

dU = TdS − pdV ⇒
(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

dE = TdS + V dp ⇒
(
∂T

∂p

)
S

=

(
∂V

∂S

)
p

dA = −SdT − pdV ⇒
(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

dG = −SdT + V dp ⇒
(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

Magnetic system:

dU = TdS +HdM ⇒
(
∂T

∂M

)
S

=

(
∂H

∂S

)
M

dE = TdS −MdH ⇒
(
∂T

∂H

)
S

= −
(
∂M

∂S

)
H

dA = −SdT +HdM ⇒
(
∂S

∂M

)
T

= −
(
∂H

∂T

)
M

dG = −SdT −MdH ⇒
(
∂S

∂H

)
T

=

(
∂M

∂T

)
H

Additional relations involving thermodynamic potentials:

U = A+ TS = A− T
(
∂A

∂T

)
V

= −T 2

(
∂(A/T )

∂T

)
V

E = G+ TS = G− T
(
∂G

∂T

)
p

= −T 2

(
∂(G/T )

∂T

)
p

G(T, p,N) = µ(T, p)N

Ω(T, V, µ) = −p(T, µ)V
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Free energy stored and retrieved:

Consider a classical ideal gas confined to a cylinder.
The cylinder walls are in thermal contact with a heat
reservoir at temperature T .
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Reversible cyclic process : no wasteful heat flow

1. Push the piston in from position 1 to position 2 quasi-statically.
The work on the system is done reversibly.

∆W12 =

∫ 2

1

Fdx =

∫ 2

1

dA =

∫ 2

1

(−SdT − pdV ) with dT = 0, dV < 0.

⇒ ∆W12 = A2 − A1 > 0.
The work done is equal to the excess Helmholtz potential (free energy).

2. Move the piston out from position 2 to position 1 quasi-statically.

∆W21 =

∫ 1

2

dA =

∫ 1

2

(−SdT − pdV ) with dT = 0, dV > 0.

⇒ ∆W21 = A1 − A2 = −∆W12 < 0.
All the energy stored (in the form free energy) is converted back into
work done by the system.

Irreversible cyclic process : some wasteful heat flow

1. Push the piston in from position 1 to position 2 rapidly.
The initial and final equilibrium states are the same as previously, but
the process requires more work. The gas heats up, which produces a
larger pressure than in the quasi-static process.
⇒ ∆W12 > A2 − A1 > 0.
Only part of the work done on the system is stored as free energy.

2. (a) Move the piston out from position 2 to position 1 quasi-statically.
⇒ |∆W21| = |A1 − A2| < |∆W12|.
All the free energy is converted back into work but that amount is
smaller than the work previously done on the system.
(b) Move the piston out from position 2 to position 1 rapidly.
⇒ |∆W21| < |A1 − A2| < |∆W12|.
Only part of the available free energy is converted back into work, where
the full amount of free energy is only part of the work previously done
on the system.
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Response functions:

Second partial derivatives of thermodynamic potentials with respect to nat-
ural independent variables are named response functions.

Response functions describe how one thermodynamic function responds to a
change in another thermodynamic function under controlled conditions, i.e.
by keeping yet different thermodynamic functions constant.

Response functions are important because of their experimental accessibility.
They are instrumental for the construction of (caloric and thermodynamic)
equations of state from empirical information.

It is common practice to distinguish between thermal response functions
(heat capacities) and mechanical response functions. The latter cover the
response involving any kind of work.

Thermal response functions:

Consider a fluid system with N = const.

The generic definition of heat capacity is C
.
= dQ/dT , the rate at which heat

must be added to a system to elicit a certain rate of temperature change.

Express the inexact differential dQ in two different ways using state functions:

dQ = TdS =


T

(
∂S

∂T

)
V

dT + T

(
∂S

∂V

)
T

dV for S(T, V )

T

(
∂S

∂T

)
p

dT + T

(
∂S

∂p

)
T

dp for S(T, p)

⇒ CV
.
= T

(
∂S

∂T

)
V

= −T
(
∂2A

∂T 2

)
V

, Cp = T

(
∂S

∂T

)
p

= −T
(
∂2G

∂T 2

)
p

Equivalent expressions of CV and Cp are inferred as first derivatives from the
internal energy U(T, V ) and enthalpy E(T, p), respectively:

dU = TdS − pdV ⇒ CV =

(
∂U

∂T

)
V

,

dE = TdS + V dp ⇒ Cp =

(
∂E

∂T

)
p

.

Note that neither function U(T, V ) or E(T, p) is a thermodynamic potential.
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Mechanical response functions:

– Isothermal compressibility: κT
.
= − 1

V

(
∂V

∂p

)
T

= − 1

V

(
∂2G

∂p2

)
T

– Adiabatic compressibility: κS
.
= − 1

V

(
∂V

∂p

)
S

= − 1

V

(
∂2E

∂p2

)
S

– Thermal expansivity: αp
.
=

1

V

(
∂V

∂T

)
p

Relations with thermal response functions Cp, CV :

Cp
CV

=
κT
κS
, Cp =

TV α2
p

κT − κS
, CV =

TV α2
pκS

κT (κT − κS)

⇒ Cp − CV =
TV α2

p

κT
> 0

These are mechanical response functions in a strict sense for a fluid system.

Mechanical response functions in a broader sense include the magnetic re-
sponse functions listed below.

Magnetic response functions:

– Isothermal susceptibility: χT
.
=

(
∂M

∂H

)
T

= −
(
∂2G

∂H2

)
T

=

(
∂2A

∂M2

)−1

T

– Adiabatic susceptibility: χS
.
=

(
∂M

∂H

)
S

= −
(
∂2E

∂H2

)
S

– “You name it”: αH
.
= −

(
∂M

∂T

)
H

Relations with thermal response functions CH , CM :

CH
CM

=
χT
χS
, CH =

Tα2
H

χT − χS
, CM =

Tα2
HχS

χT (χT − χS)

⇒ CH − CM =
Tα2

H

χT
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Isothermal and adiabatic processes:

Here we establish useful relations between state variables pertaining to isother-
mal and adiabatic processes.

The relations are formulated separately for a fluid system and for a magnetic
system. Intermediate steps are sketched for the fluid system.

Fluid system:

Start from TdS = dU + pdV with U = U(T, V )

TdS =

(
∂U

∂T

)
V

dT +

[(
∂U

∂V

)
T

+ p

]
dV

(a)
= CV dT +

1

αpV
(Cp − CV )dV

Isotherm: dT = 0 ⇒ TdS =
1

αpV
(Cp − CV )dV

(b)
= −κT

αp
(Cp − CV )dp

Adiabate: dS = 0 ⇒ dT = − 1

αpV

Cp − CV
CV

dV
(c)
=
κS
αp

Cp − CV
CV

dp

(a) Use dE = dU + pdV − V dp.

⇒ Cp − CV =

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

,

(
∂V

∂T

)
p

= V αp.

(b) Use dV =

(
∂V

∂p

)
T

dp = −V κTdp

(c) Use dV = −V κSdp

Magnetic system:

Start from TdS = dU −HdM with U = U(T,M).

TdS =

(
∂U

∂T

)
M

dT +

[(
∂U

∂M

)
T

−H
]
dM = CMdT −

1

αH
(CH − CM)dM

Isotherm: dT = 0 ⇒ TdS = − 1

αH
(CH − CM)dM = −χT

αH
(CH − CM)dH

Adiabate: dS = 0 ⇒ dT =
1

αH

CH − CM
CM

dM =
χS
αH

CH − CM
CM

dH
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Conditions for thermal equilibrium:

Consider a homogeneous fluid system in a rigid and insulated container which
is divided into two compartments, A and B, by a fictitious partition.

Internal energy, volume, and number of particles are conserved:

U = UA + UB = const, V = VA + VB = const, N = NA +NB = const.

The fictitious partitioning permits fluctuations of these extensive quantities
between compartments constrained by the conservation laws:

dUA = −dUB, dVA = −dVB, dNA = −dNB.

At thermal equilibrium, the entropy S(U, V,N) is a maximum [tln9]. Hence
its differential to first order must vanish:

dS =
1

T
dU +

p

T
dV − µ

T
dN = 0.

This condition applied to the container with a fictitious partition reads,

dS =
∑
α=A,B

[(
∂Sα
∂Uα

)
VαNα

dUα +

(
∂Sα
∂Vα

)
UαNα

dVα +

(
∂Sα
∂Nα

)
UαVα

dNα

]
=

(
1

TA
− 1

TB

)
dUA +

(
pA
TA
− pB
TB

)
dVA −

(
µA
TA
− µB
TB

)
dNA = 0.

In each of the three terms, at least one of the factors must vanish at equilib-
rium.

(i) In the case of a fictitious wall, we permit dUA 6= 0 (energy fluctuations),
dVA 6= 0 (volume fluctuations), and dNA 6= 0 (fluctuations in particle num-
ber). In consequence, we must have,

TA = TB, pA = pB, µA = µB.

(ii) If the fictitious wall is replaced by a real, mobile, conducting wall, then
particle fluctuations in the two compartments are suppressed, dNA = 0. In
this case, µA 6= µB is possible, but TA = TB and pA = pB must still hold.

(iii) If the mobile, conducting wall is replaced by a rigid, conducting wall, then
volume fluctuations in the two compartments are also suppressed, dVA = 0.
In this case, pA 6= pB is possible in addition to µA 6= µB, but the condition
TA = TB remains in place.

(iv) If the rigid conducting wall is replaced by a rigid insulating wall, then
energy fluctuations in the two compartments are also suppressed: dUA = 0.
In this case, TA 6= TB is possible in addition to µA 6= µB and pA 6= pB.
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How about the case (v) of a mobile insulating wall? Here we must reason
differently. This is a situation where entropy fluctuations are prohibited,
while energy fluctuations are permitted.

We cope with this situation by switching from the thermodynamic poten-
tial S(U, V,N) to the thermodynamic potential U(S, V,N), which assumes a
minimum at thermodynamic equilibrium.

The extremum condition is again a differential that vanishes to first order:

dU = TdS − pdV + µdN.

Applied to the container with compartments A and B, it becomes,

dU =
∑
α=A,B

[(
∂Sα
∂Sα

)
VαNα

dUα +

(
∂Uα
∂Vα

)
SαNα

dVα +

(
∂Uα
∂Nα

)
AαVα

dNα

]
= (TA − TB) dSA − (pA − pB) dVA + (µA − µB) dNA = 0.

In each of the three terms, again at least one of the factors must vanish at
equilibrium.

(v) A mobile insulating wall permits volume fluctuations, dVA 6= 0, thus
requires, pA = pB. It prohibits fluctuations in the number of particles, dNA =
0, which allows µA 6= µB. Entropy fluctuations are also prohibited (no heat
flow between compartments), dSA = 0, which allows TA 6= TB at equilibrium.

Further combinations of equilibrium constraints will be discussed in the con-
text of application.

Equilibrium conditions become more complex for inhomogeneous systems.
In the presence of external fields, pressure and chemical potential may be-
come non-uniform, while temperature remains uniform if heat flow is uncon-
strained.
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Stability of thermal equilibrium:

Consider a fluid system with N = const in thermal equilibrium at temper-
ature T0 and pressure p0. Any spontaneous deviation from that state must
cause an increase in Gibbs free energy,

G(T0, p0) = U(S, V )− T0S + p0V.

Effects entropy fluctuations δS and volume fluctuations δV :

δG =

[(
∂U

∂S

)
V

− T0
]
δS +

[(
∂U

∂V

)
S

+ p0

]
δV

+
1

2

[(
∂2U

∂S2

)
(δS)2 + 2

(
∂2U

∂S∂V

)
δSδV +

(
∂2U

∂V 2

)
(δV )2

]

Equilibrium condition:

(
∂U

∂S

)
V

− T0 = 0,

(
∂U

∂V

)
S

+ p0 = 0

Stability condition:

(
∂2U

∂S2

)
(δS)2 + 2

(
∂2U

∂S∂V

)
δSδV +

(
∂2U

∂V 2

)
(δV )2 > 0.

Condition for quadratic form to be positive definite:

∂2U

∂S2
> 0,

∂2U

∂V 2
> 0,

∂2U

∂S2

∂2U

∂V 2
−
(
∂2U

∂S∂V

)2

> 0.

Implications: (
∂2U

∂S2

)
V

=

(
∂T

∂S

)
V

=
T

CV
> 0 ⇒ CV > 0.

(
∂2U

∂V 2

)
S

= −
(
∂p

∂V

)
S

=
1

V κS
> 0 ⇒ κS > 0.(

∂2U

∂S2

)
V

(
∂2U

∂V 2

)
S

>

(
∂2U

∂S∂V

)2

⇒
(
∂T

∂S

)
V

[
−
(
∂p

∂V

)
S

]
>

(
∂T

∂V

)2

S

⇒
[
T

CV

] [
1

V κS

]
>

(
∂T

∂V

)2

S

> 0.

Let us keep in mind that the thermal stability conditions for inhomogeneous
systems are more complex.
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