
Statistical Interactions I: Combinatorics [tsc20]

The term statistical interaction covers a lot of ground.

– Multiple occupancy of 1-particle states is permitted for bosons and pro-
hibited for fermions. The exclusion principle is a statistical interaction.

– Phonons are collective excitations representing atomic vibrations in
solids. Their statistical interaction is encoded in the bosonic statistics
and the band structure.

– Conduction electrons in metals are represented by collective excitations
whose statistical interaction is encoded in the fermionic statistics and
the band structure.

– Most steric interactions (e.g. hard-core repulsions) simply involve ex-
cluded volumes and thus become statistical interactions. No interaction
energies are in play.

– Statistical interactions are easier to cope with than dynamical interac-
tions. Interaction energies between simple particles become activation
energies of more complex particles.

This module offers a gentle introduction to the combinatorics of statistically
interacting particles. Particle energies have no part in this aspect.

Fermions:

Consider a system with NA orbitals and N particles. Orbitals are distin-
guishable. Particles are indistinguishable. Multiple occupancy is prohibited
(a manifestation of the Pauli principle).

A1 2 ... N

N = 5

A N   = 10

Binomial expression for the number of distinct microstates with N particles:

W (N) =

(
NA

N

)
=

NA!

N !(NA −N)!
.

Multiplicity expression in standardized form (for one species):

W (N) =

(
d+N − 1

N

)
, d = A− g(N − 1), A = NA, g = 1.
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A: number of options available for placing the first particle into the array
of orbitals (capacity constant).

g: impact of placing one particle on the capacity of placing further parti-
cles into the orbitals (statistical interaction coefficient).

d: number of options for placing N th particle with N − 1 already placed.

The maximum capacity is reached when N = NA: W (NA + 1) = 0.

Representation of fermionic microstates for NA = 4 and N = 0, 1, 2, 3, 4:

0000
1000 0100 0010 0001
1100 1010 1001 0110 0101 0011
1110 1101 1011 0111
1111

Placing one fermion, ∆N = 1, reduces the options for placing next the
fermion as follows: ∆d = −∆N = −1.

Placing the N th fermion for NA = 4 (with N − 1 fermions already in place):

N = 1 ⇒ d = 4: 0000 → 1000 0100 0010 0001
N = 2 ⇒ d = 3: 1000 → 1100 1010 1001
N = 3 ⇒ d = 2: 1100 → 1110 1101
N = 4 ⇒ d = 1: 1110 → 1111
N = 5 ⇒ d = 0

Bosons:

Consider a system with NA orbitals and N bosonic particles. Orbitals are
distinguishable. Particles are indistinguishable. Multiple occupancy is per-
mitted and unrestricted.

A1 2 ... N

N = 12

A N   = 10

Binomial expression for the number of distinct microstates with N particles:

W (N) =

(
NA +N − 1

N

)
=

(NA +N − 1)!

N !(NA − 1)!
.
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Multiplicity expression in standardized form previously used for fermions:

W (N) =

(
d+N − 1

N

)
, d = A− g(N − 1), A = NA, g = 0.

The system has unlimited capacity for populating oribitals with bosons.

Representation of bosonic microstates for NA = 3 and N = 0, 1, 2, 3:

000
100 010 001
200 020 002 110 101 011
300 030 003 120 102 012 210 201 021 111

Placing a boson does not reduce options for placing next boson: ∆d = 0.
Three cases of placing N th boson for NA = 3:

N = 1 ⇒ d = 3: 000 → 100 010 001
N = 2 ⇒ d = 3: 100 → 200 110 101
N = 3 ⇒ d = 3: 110 → 210 120 111

An alternative (fermionic looking) binomial expression for bosonic combina-
torics introduces NB effective orbitals with multiple occupancy prohibited:

W (N) =

(
NB

N

)
, NB = NA +N − 1.

Bosonic microstates for NA = 2, i.e. NB = 2 + N and N = 0, 1, 2, 3 in the
alternative representation:

00
100 010 001
1100 1010 1001 0110 0101 0011
11100 11010 11001 10110 10101 10011 01110 01101 01011 00111

This representation turns out to be more useful for the purpose of general-
izations to less familiar statistics.

Size L and XL particles:

Place N (indistinguishable) particles into an array of NA (distinguishable)
orbitals. We provisionally assume that the array is linear.

Any two particles must be at least g sites apart. This covers the cases g = 1
(fermions) and g = 0 (bosons) discussed previously.
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– Capacity constant: A = NA.

– Statistical interaction coefficients:1 g = 0, 1, 2, . . .

– Generalized Pauli principle: d = A− g(N − 1).

Multiplicity expression in standardized form:

W (N) =

(
d+N − 1

N

)
=

(d+N − 1)!

N !(d− 1)!
.

Microstates of particles with g = 2 for NA = 5 and N = 0, 1, 2, 3:

00000
10000 01000 00100 00010 00001
10100 10010 10001 01010 01001 00101
10101

Between any two occupied orbitals, there is at least one vacant orbital.

The alternative representation of microstates introduces NB effective orbitals
with multiple occupancy prohibited and no need for extra space.

W (N) =

(
NB

N

)
, NB = A− (g − 1)(N − 1).

Equivalent microstates for NB = 6−N and N = 0, 1, 2, 3:

000000
10000 01000 00100 00010 00001
1100 1010 1001 0110 0101 0011
111

This representation does not require the array to be linear. It is the one that
naturally extends to cases of fractional statistics.

Semions:

Place N (indistinguishable) semionic particles into an array of NA (distin-
guishable) orbitals. The placement of one particle reduces the options for
placing further particles by one half.2

1In the airline industry g = 0, 1, 2, 3 might stand for cargo, economy, business, first class.
2Haldane 1991.
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– Statistical interaction coefficient: g = 1
2

(fractional statistics).

– Capacity constant: A =

{
NA for N = 1, 3, 5, . . .
NA + 1

2
for N = 0, 2, 4, . . .

Multiplicity expression in standardized form:

W (N) =

(
d+N − 1

N

)
, d = A− g(N − 1).

Multiplicity expression which uses effective fermionic orbitals:

W (N) =

(
NB

N

)
, NB = A− (g − 1)(N − 1).

Microstates of particles for NA = 3 has varying NB = A+ 1
2
(N − 1):

N = 0, 2, 4, 6

000
1100 1010 1001 0110 0101 0011
11110 11101 11011 10111 01111
111111

N = 1, 3, 5

100 010 001
1110 1101 1011 0111
11111

In this representation placing two semions goes along with adding one orbital.

Prominent applications of semionic statistics include spinon excitations in
quantum spin chains and antiferromagnetic domain walls in Ising chains.

Orbitals that permit up to double occupancy are not semionic in nature.
Multiple occupancy is often associated with internal degrees of freedom.

Particles with internal degrees of freedom:

Internal degrees of freedom are distinguishable traits of otherwise indistin-
guishable particles. e.g. electrons (fermions) with spin ↑ or ↓.

Microstates for NA = 2 orbitals and N = 0, 1, . . . , 4 electrons
( 0: vacancy; ↑, ↓: single occupancy; l: double occupancy):

00
↑0 0↑ ↓0 0↓
l0 0l ↑↓ ↓↑ ↑↑ ↓↓
l↑ l↓ ↑l ↓l
ll

(00)(00)

(↑0)(00) (0↑)(00) (00)(↓0) (00)(0↓)
(↑0)(↓0) (0↑)(0↓) (↑0)(0↓) (0↑)(↓0) (↑↑)(00) (00)(↓↓)
(↑↑)(↓0) (↑0)(↓↓) (↑↑)(0↓) (0↑)(↓↓)
(↑↑)(↓↓)

An alternative representation of the same microstates is shown on the right.
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Consider, more generally, a system of particles with a two-valued internal
degree of freedom and exclusion statistics g ≥ 0 occupying NA orbitals.

We effectively have two sets of orbitals and two species of particles. The
multiplicity expression (in standardized form) factorizes:

W (N1, N2) =

(
d1 +N1 − 1

N1

)(
d2 +N2 − 1

N2

)
,

d1 = A1 − g(N1 − 1), d2 = A1 − g(N2 − 1).

If all distinguishable traits of the internal degree of freedom are ignorable,
we can effectively merge the two species of particles:

W (N) =
N∑

N1=0

W (N1, N −N1) = W (N) =

(
d+N − 1

N

)
.

d = A− g(N − 1), N = N1 +N2, A = A1 + A2.

In the representation on the right of the example shown, the merger ignores
the distinction between ↑ and ↓. The number of microstates does not change.

For a comparison with the situation discussed next, we rewrite the multiplic-
ity expression for distinguishable particles in separate orbitals as follows:

W (N1, N2) =

(
d1 +N1 − 1

N1

)(
d2 +N2 − 1

N2

)
,

dm = Am −
∑
m′

gmm′(Nm′ − δmm′), g =

(
1 0
0 1

)
, A1 + A2 = NA.

It is convenient to write the statistical interaction coefficients as elements of
a matrix (or tensor) and to generalize the expression for dm as shown.

Distinguishable species particles in shared orbitals:

Consider a system of NA orbitals. Each orbital is either vacant or populated
by one particle from species 1 or species 2.

The standardized multiplicity expression now involves off-diagnonal elements
of g, indicative of an inter-species statistical interaction:3

W (N1, N2) =

(
d1 +N1 − 1

N1

)(
d2 +N2 − 1

N2

)
,

dm = Am −
∑
m′

gmm′(Nm′ − δmm′), g =

(
1 1
0 1

)
, A1 = A2 = NA.

3Interchanging the values of g12 and g21 yields the same function W (N1, N2).
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Microstates for NA = 2 and NA = 3:

00
10 01, 20 02
11, 22, 12 21

000
100 010 001, 200 020 002
110 101 011, 220 202 022, 120 102 012, 210 201 021
111, 222, 112 121 211, 122 212 221

The two species are not mergeable if they share orbitals. Removing or ignor-
ing distinguishable particle traits changes the number of microstates.

Variations and extensions:

– If M species of particles are present, W (N1, . . . , NM) has M binomial
factors and the matrix g grows to size M ×M with zeros below the
diagonal and ones elsewhere.

– If multiple occupancy of orbitals without limit is permitted, we must
use gmm′ = 0 instead.

– If particles of either species must be spaced g cells apart, we must use
g11 = g12 = g22 = g and g21 = g − 1.

Particle species discussed thus far are categorized as compacts. The sequence
in which compacts are placed into an orbital (if allowed) does not matter.

Hosts and caps:

Consider a system of NA orbitals. Each orbital may be vacant, singly occu-
pied, or doubly occupied by particles of a single species.

In this case, the rank in placement (first or second) counts as a distinguishable
trait even if the particles are otherwise identical. The first particle placed
into an orbital is named host and the second particle placed is named cap.

Multiplicity of microstates with N1 hosts and N2 caps:

W (N1, N2) =

(
d1 +N1 − 1

N1

)(
d2 +N2 − 1

N2

)
,

dm = Am −
∑
m′

gmm′(Nm′ − δmm′),

g =

(
1 0
−1 1

)
, A1 = NA, A2 = 0.

– The reference state (all orbitals vacant) has capacity for placing a host
in NA slots (A1 = NA), but no capacity for placing a cap (A2 = 0).
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– Adding a host decreases the capacity for placing further hosts (g11 = 1),
but increases the capacity for placing caps (g21 = −1).

– Adding a cap does not affect the capacity for placing hosts (g12 = 0)
but decreases the capacity for placing further caps (g22 = 1).

Microstates for NA = 2 and NA = 3: [0: vacancy, 1: host, 2: host & cap]

00
10 01
20 02, 11
21 12
22

000
100 010 001
110 101 011, 200 020 002
111, 210 201 021 120 102 012
211 121 112, 220 202 022
221 212 122
222

The total number of microstates generated by hosts and caps in NA orbitals
is N3

A, equal to that of two species of fermionic compacts with distinguishable
traits (previous section), but distributed differently.

Hosts and caps are a case of nested particles. Caps can only be placed
(metaphoriclly) on top of hosts which already in the orbitals.

Hosts, hybrids, and caps:

We generalize the host/cap situation from orbitals that permit double occu-
pancy to orbitals that allow a maximum occupancy of 3 ≤M <∞.

– The first particle placed into an orbital belongs to the host category.

– The next M−2 particles placed in the same orbital have the capability
of hosting and being hosted. They are categorized as hybrids.

– The (last) M th particle that fits into the orbital is a cap.

The multiplicity of microstates for the case M = 3 with N1 hosts, N2 hybrids,
and N3 caps in the standardized format is,

W ({Nm}) =
3∏

m=1

(
dm +Nm − 1

Nm

)
, dm = Am −

∑
m′

gmm′(Nm′ − δmm′),

g =

 1 0 0
−1 1 0

0 −1 1

 , A1 = NA, A2 = A3 = 0.

– Adding a particle of any species decreases the capacity for placing fur-
ther particles of the same species (g11 = g22 = g33 = 1).
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– Adding a host opens a slot for a hybrid (g21 = −1).

– Likewise, adding a hybrid opens a slot for a cap (g32 = −1).

– Any instance of gmm′ = 0 means that the available slots for particle
species m is unaffected when a particle of species m′ is placed.

Microstates for NA = 2 and NA = 3:
[0: vacancy, 1: host, 2: host & hybrid, 3: host & hybrid & cap]

00
10 01
20 02, 11
30 03, 21 12
31 13, 22
32 23
33

000
100 010 001
110 101 011, 200 020 002
111, 210 201 021 120 102 012, 300 030 003
211 121 112, 220 202 022, 310 301 031 130 103 013
221 212 122, 311 131 113, 320 302 032 230 203 023
222, 321 213 132 312 123 231, 330 303 033
322 232 223, 331 313 133
332 323 233
333

In the general case, the matrix g is of size M ×M with nonzero elements
gmm = 1 on the diagonal and gm,m−1 = −1 just below the diagonal.

Hosts, hybrids, and tags:

Consider a system of NA orbitals, which may be vacant or occupied by any
number of particles. The rank in placement is potentially a distinguishable
trait for particles. In the absence of any such trait we are dealing with bosons.

If only the first particle in an orbital has a distinctive trait, we have a system
of hosts and tags. One host precedes any number of tags in an orbital.

Multiplicity of microstates with N1 hosts and N2 tags (across all orbitals):

W (N1, N2) =

(
d1 +N1 − 1

N1

)(
d2 +N2 − 1

N2

)
,

dm = Am −
∑
m′

gmm′(Nm′ − δmm′),

g =

(
1 0
−1 0

)
, A1 = NA, A2 = 0.

– The system without particles has only capacity for hosts (A1 = NA),
not for tags (A2 = 0).
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– Adding hosts decreases capacity for further hosts (g11 = 1), but in-
creases capacity for tags (g21 = −1).

– Adding tags does not affect capacity for hosts (g12 = 0) or for further
tags (g22 = 0).

If we also assign a distinguishable trait to the particles placed second in an
orbital we have a system hosts, hybrids, and tags.

Multiplicity of microstates with N1 hosts, N2 hybrids, and N3 tags :

W ({Nm}) =
3∏

m=1

(
dm +Nm − 1

Nm

)
, dm = Am −

∑
m′

gmm′(Nm′ − δmm′),

g =

 1 0 0
−1 1 0

0 −1 0

 , A1 = NA, A2 = A3 = 0.

– The key difference between caps and tags is that caps close down slots
(gcc = 1), whereas tags leave them open (gtt = 0).

– The role of hybrids is the same in combination with tags and caps.

– The nesting can be extended to M − 2 hybrids. The matrix g is of size
M ×M with nonzero elements gmm = 1 on the diagonal for m < M
and gm,m−1 = −1 just below the diagonal.

Microstates for M = 3 (one hybrid species):
[0: vacancy, 1: host, 2: host & hybrid, n ≥ 3: host & hybrid & n− 2 tags]

NA = 2 and N1 +N2 +N3 ≤ 5 and NA = 3 and N1 +N2 +N3 ≤ 5:

00
10 01
20 02, 11
30 03, 21 12
40 04, 31 13, 22
50 05, 41 14, 32 23

000
100 010 001
200 020 002, 110 101 011
300 030, 003, 210 201 021 120 102 012, 111
400 040 004, 220 202 022, 310 103 031 130 301 013, 211 121 112
500 050 005, 410 104 041 140 401 014, 230 302 023 320 203 032,

221 212 122, 311 131 113
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Configurational entropy:

The natural logarithm of the multiplicity W ({Nm}) of microstates with given
numbers of particles, {Nm}, is a configurational entropy in the restricted
sense that all microstates have equal probability. The expression [tex186],

S({Nm}) = kB ln
(
W ({Nm})

)
= kB

∑
m

[(
Nm + Ym

)
ln
(
Nm + Ym

)
−Nm lnNm − Ym lnYm

]
,

Ym = Am −
∑
m′

gmm′Nm′

is exact for a macroscopic system.4 It depends on the capacity constants Am,
the statistical interaction coefficients gmm′ , and the particle content {Nm}.

The extensivity of the entropy is encoded in the capacity constants Am of
compacts and/or hosts.

Examples with one species of particles.

We compare the entropy per orbital, S̄
.
= S/NA, as a function of the popula-

tion density, N̄
.
= N/NA, in the limit NA →∞ for fermions (g = 1), bosons

(g = 0), and semions (g = 1
2
).

��� ��� ��� ��� ��� ���
���

���

���

���

���

�

�
/�
�

bosons

semions

fermions

S̄/kB = −
(
1− N̄

)
ln
(
1− N̄

)
− N̄ ln N̄ : g = 1,

S̄/kB =
(
1 + N̄

)
ln
(
1 + N̄

)
− N̄ ln N̄ : g = 0,

S̄/kB =
(
1 + 1

2
N̄
)

ln
(
1 + 1

2
N̄
)
− N̄ ln N̄

−
(
1− 1

2
N̄
)

ln
(
1− 1

2
N̄
)

: g = 1
2
.

4Isakov 1994.
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– Fermions produce the largest entropy when the system is half full. The
entropy curve has a reflection symmetry at N̄ = 1

2
.

– The entropy of bosons is a monotonically increasing function N̄ . Its
growth slows down to ∼ ln N̄ for large N̄ .

– The maximum particle density for semions is twice that of fermions.
Semions produce the largest entropy before the system is half full.

Example with two species of particles.

We first consider a system of hosts 1 and caps 2. The scaled configurational
entropy reads

S̄/kB = −
(
1− N̄1

)
ln
(
1− N̄1

)
− N̄2 ln N̄2 −

(
N̄1 − N̄2

)
ln
(
N̄1 − N̄2

)
.

��� ��� ��� ��� ���
��

���

���

���

���

���
��

– The cap population cannot exceed the host population, which implies
0 ≤ N̄2 ≤ N̄1 ≤ 1.

– Contour lines are at S̄/kB = 0.1, . . . , 0.9

– The entropy maximum at given host density N̄1 is realized for cap
density N̄2 = 1

2
N̄1.

– Global entropy maximum: S̄/kB = ln 3 for N̄1 = 2
3
, N̄2 = 1

3
.

Semions versus hosts and caps.

A system of NA orbitals can accommodate a maximum of 2NA spinons or
2NA hosts and caps (NA particles of each category).

It is correct to state that each orbital can accommodate one host and one
cap, but incorrect to state that each orbital can accommodate two semions.
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The graph compares the configurational entropy plotted versus average pop-
ulation density of semions and host/cap combinations.

��� ��� ��� ��� ���
���

���

���

���

���

���

���

�

�
/�
�

semion

host/cap

– Semions produce the highest entropy S̄/kB ' 0.962 at N̄ ' 0.894.

– For host/cap combinations we set N̄ = N̄1 + N̄2.

– Host/cap combinations at 0 < N̄ < 1.5 produce the highest entropy
when N̄2 = 1

2
N̄1.

– At higher population density, the host population is at its maximum,
N̄1 = 1 and the cap population increases: 1

2
< N̄2 < 1.

– Hosts and caps produce the highest entropy S̄/kB = ln 3 ' 1.098 at
N̄ = 1.

– At N̄ = 1.5, the largest host/cap entropy dips slightly below the semion
entropy.

– At low population densities the semion entropy is slightly higher than
the maximum host/cap entropy.
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