
Equilibrium Thermodynamics II:

Engines [tsc2]

Engines as understood here involve a thermodynamic system undergoing a
cyclic process while exchanging heat ∆Q with and performing work ∆W on
the environment. Extensive X and intensive Y are conjugate variables.

We adopt the convention that ∆Q > 0 means positive heat flowing into the
system and ∆W > 0 means positive work done on the system, thus both
increasing its internal energy U .

Carnot engine:

Zeroth law: Any state of thermal equilibrium can be characterized by a
measurable empirical temperatures Θ.

Second law: Heat flows spontaneously from high to low temperature.

Thermal contact: Temperature differences ∆Θ disappear without producing
work. They are, in a sense, wasteful.

Heat engine: Part of the heat flowing from high to low temperature is con-
verted into work via a cyclic process.

Carnot engine: Wasteful heat flows are eliminated, which requires that the
cyclic process is fully reversible. The Carnot cycle has four steps.
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1→ 2 Engine in contact with reservoir at high temperature ΘH .
Isothermal absorption of heat: ∆Q12 > 0 at ΘH .

2→ 3 Engine thermally isolated from environment.
Adiabatic cooling: ΘH → ΘL with ∆Q23 = 0.

3→ 4 Engine in contact with reservoir at low temperature ΘL.
Isothermal expulsion of heat: ∆Q34 < 0 at ΘL.

4→ 1 Engine thermally isolated from environment.
Adiabatic heating: ΘL → ΘH with ∆Q41 = 0.
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Efficiency of Carnot engine:

The internal energy U is a state variable. During each step it changes due to
heat exchange and/or work performance. At the end of the cycle, its original
value is restored.

⇒ ∆U = ∆Q12 + ∆W12 + ∆W23 + ∆Q34 + ∆W34 + ∆W41 = 0.

Total heat input: ∆Qin = ∆Q12.

Net work output: ∆Wout = −∆W12 −∆W23 −∆W34 −∆W41.

∆U = 0⇒ ∆Wout = ∆Q12 + ∆Q34 = ∆Q12 − |∆Q34|.

Efficiency: η
.
=

∆Wout

∆Qin

= 1− |∆Q34|
∆Q12

.

Maximum efficiency of heat engines:

Efficiencies of different engines can be compared if they operate between heat
reservoirs at the same (empirical) temperatures.

Is it possible to construct a heat engine A which is more efficient than the
Carnot engine C?

The Carnot engine involves only reversible processes. Therefore, it can be
run in reverse with same heat transfers and work performances.

Use engine A to drive engine C in the reverse i.e. as a refrigerator.
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Heat transfers: ∆QA > 0, ∆Q12 < 0, ∆Q34 > 0.

Work performance: ∆W = ∆W
(A)
out = ∆W

(C)
in > 0.

Efficiencies: ηA =
∆W

∆QA

, ηC =
∆W

|∆Q12|
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Since engine C operates reversibly, ηC is the same in the forward and reverse
directions. Note: ηC is not an efficiency in the reverse mode.

Implications if engine A were more efficient than engine C:

ηA > ηC ⇒ ∆QA < |∆Q12|.

The two engines running in tandem would then cause a net heat flow from
low to high temperature with no work input, which represents a violation of
the second law.

Conclusions:

– Engine A cannot be more efficient than engine C.

– All Carnot engines operating between empirical temperatures ΘH and
ΘL must have the same efficiency.

Absolute temperature:

The universal efficiency of Carnot engines operating between reservoirs of
given empirical temperatures makes it possible to define an absolute temper-
ature, a monotonic function, T = g(Θ), of empirical temperature Θ.

Consider three heat reservoirs at empirical
temperatures ΘH ,ΘM ,ΘL as shown.

Three Carnot engines (two in series) are run
between the reservoirs as shown.

Efficiencies: 1− |∆QL|
∆QH

= 1− f(ΘL,ΘH),

1− ∆Q̄M

∆Q̄H

= 1− f(ΘM ,ΘH),

1− |∆Q̄L|
∆Q̄M

= 1− f(ΘL,ΘM).
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Note that ∆Q̄H , ∆Q̄M , and ∆QH are positive, whereas ∆Q̄L and ∆QL are
negative, according to the convention adopted.

Implication of the second law: if ∆Q̄L = ∆QL then ∆Q̄H = ∆QH .

If ∆Q̄H 6= ∆QH , we could run the engines on the left or right in reverse mode
and create a net heat flow from low to high temperature.
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Consequence of equalities:

|∆Q̄L|
∆Q̄H

=
|∆Q̄L|
∆Q̄M

∆Q̄M

∆Q̄H

=
|∆QL|
∆QH

.

Implication for universal Carnot efficiency:

⇒ f(ΘL,ΘM)f(ΘM ,ΘH) = f(ΘL,ΘH).

Functional form which satisfies functional equation:

f(ΘL,ΘH) =
g(ΘL)

g(ΘH)
.

Running Carnot engines makes it possible to determine the function g(Θ)
for any choice of empirical temperature.

Definition of absolute temperature ratios:

TL
TH

.
=
g(ΘL)

g(ΘH)
.

Kelvin scale of absolute temperature is fixed by triple point of water (unique
temperature and pressure for which H2O coexists as gas, liquid, and solid):

Ttrp = 273.16K.

Entropy:

Heat is not a state variable.
In the Carnot cycle the net heat transfer is nonzero: ∆QH + ∆QL 6= 0.

A state variable associated with heat transfer can be constructed from the
efficiency expression of the Carnot cycle:

η = 1− |∆QL|
∆QH

= 1− TL
TH

⇒ ∆QL

TL
+

∆QH

TH
= 0.

Any reversible cyclic process is equivalent to
an array of Carnot cycles running in parallel.

For any reversible cyclic process we have:∮
dQ

T
.
=

∮
dS = 0.

The state variable thus constructed is the en-
tropy S. The equality, dS = dQ/T , only
holds for reversible processes.
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Implications for the zero-temperature limit:

– Maximum efficiency η = 1 can only be realized if TL = 0.

– The third law states that dQ = TdS = 0 in the limit T → 0.

– Hence all reversible processes become adiabatic as T → 0.

– Cooling a thermodynamic system requires extraction of heat.

– A Carnot engine run in reverse extracts heat most efficiently.

– Heat extraction loses traction in the limit T → 0.

– Cooling a macroscopic system to T = 0 is an elusive goal.

Irreversible generalization of the Carnot cycle:

η = 1− |∆QL|
∆QH

< 1− TL
TH
⇒ |∆QL|

∆QH

>
TL
TH
⇒ ∆QL

TL
+

∆QH

TH
< 0.

In a more general quasistatic cyclic process we have:∮
dQ

T
≤ 0,

∮
dS = 0 ⇒ dS ≥ dQ

T
.

For all irreversible process in isolated system we have:

∆Q = 0 ⇒ ∆S > 0.

Internal energy:

The first law states that U is a state variable. In the expression,

dU = dQ+ dW + dZ,

the differential dU is exact, but the differentials dQ for heat transfer, dW for
work performance, and dZ for matter transfer are not.

Expressing the inexact differentials in terms of state variables,1

dQ = TdS, dW = −pdV +HdM + . . . , dZ = µdN,

enables us to combine the first and second laws into an exact differential for
the internal energy:

dU = TdS − pdV +HdM + µdN + . . .

This exact differential will be used in practical application and in the further
development of equilibrium thermodynamics.

1Among the many different ways of work performance we cite just the two most prominent
ones: mechanical work of a piston and work by an external magnetic field.
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Reversible processes in fluid system:

Most heat engines employ a fluid as the working medium. Here we summarize
some relevant facts that will be used in the description of various heat-engine
designs.

We focus on reversible processes with heat transfer, dQ = TdS, work perfor-
mance, dW = −pdV , and no transfer of matter, dN = 0.

– Isothermal process: T = const. dQ 6= 0 in general.

– Isochoric process: V = const. dQ = CV dT, dU = CV dT .

– Isobaric process: p = const. dQ = CpdT .

– Isentropic (adiabatic) process: S = const. dQ = 0.

The heat capacities CV and Cp will be properly introduced later.

Internal energy: dU = dQ+ dW = TdS − pdV .

V = const. ⇒ dW = 0 ⇒ dU = dQ (no work performed).

S = const. ⇒ dQ = 0 ⇒ dU = dW (no heat transferred).

Classical ideal gas as an approximate realization of a very dilute fluid:

– Equation of state: pV = nRT .

– Internal energy: U = CV T, CV = αnR = const [tex1].

monatomic gas: α = 3
2
, γ = 5

3
.

diatomic gas: α = 5
2
, γ = 7

5
.

polyatomic gas: α = 3, γ = 4
3
.

– Isotherm: T = const. ⇒ pV = const.

– Adiabate: S = const. ⇒ pV γ = const., γ = 1 + 1/α
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Gasoline engine (Otto cycle):

Four-stroke Otto cycle (left)

1-2: compression stroke

2-3-4: power stroke (spark plug ignites at 2)

4-1’-5: exhaust stroke (exhaust valve opens at 4)

5-1: intake stroke (intake valve opens at 5)
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Idealized Otto cycle (right)

1-2: adiabatic compression of air-fuel mixture (S = const)

2-3: explosion of air-fuel mixture (V = const)

3-4: adiabatic expansion of exhaust gas (S = const)

4-1: isochoric release of exhaust gas (V = const).

1-5-1: intake stroke (thermodynamically ignored)

Parameter: K
.
= V1/V2 (compression ratio).

The compression ratio K must not be chosen too large to prevent the air-fuel
mixture from igniting spontaneously, i.e. prematurely.
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Diesel engine:

Four-stroke Diesel cycle (left)

1-2: compression stroke (fuel injected and spontaneously ignited at 2)

2-3-4: power stroke (Diesel fuel burns more slowly than gasoline)

4-1’-5: exhaust stroke (exhaust valve opens at 4)

5-1: intake stroke (intake valve opens at 5)

p p

V V
2 1VVV1V2

5

4
1’

1 5

4

1

V3 V3

2 3 32

Idealized Diesel cycle (right)

1-2: adiabatic compression of air (S = const)

2-3: isobaric expansion as fuel explodes (p = const)

3-4: adiabatic expansion of exhaust gas (S = const)

4-1: isochoric release of exhaust gas (V = const).

1-5-1: intake stroke (thermodynamically ignored)

Parameters: K
.
= V1/V2 (compression ratio), L

.
= V3/V2
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Escher-Wyss gas turbine:

A gas flows in a closed system from the boiler via the turbine to the radiator
and then via the compressor back into the boiler.

As the beam of hot gas hits the blades of the turbine during the power stroke
it expands with little heat transfer. The compression of the cooled gas is also
roughly adiabatic. The gas is heated up inside the boiler and cooled down
inside the radiator at different but roughly constant pressures.

p
1

p
2

4 1

V

23

p

Boi Tur

RadCom

> 0

> 0

∆

∆

T

T

< 0

< 0

∆

T

T

∆

T

T

T T

1

2

3

4

Idealized process (Joule cycle)

1-2: Adiabatic expansion of the hot gas after ejection from the boiler as it
drives the turbine (S = const).

2-3: Isobaric contraction as the gas flows through the radiator and cools
down further in the process (p = const).

3-4: Adiabatic compression of the cooled gas for injection into the boiler
(S = const).

4-1: Isobaric expansion of the gas as it heats up inside the boiler (p = const).

The pressure inside the boiler is regulated by the rates of gas injection and
ejection and the rate of heat transfer from the energy source to the gas.

The injection and ejection rates are the same in mass units but the ejection
rate is larger than the injection rate in volume units. This accounts for the
expansion of the gas inside the boiler as described in step 4-1.
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Stirling engine:

The Stirling engine is an external combustion engine. It isolates the working
fluid from the heat source. Combustion is better controlled than in internal
combustion engines.
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Piston P expands gas at high temperature TH and compresses gas at low
temperature TL.

Displacer D moves gas between regions of high temperature TH and low
temperature TL through the regenerator.

Regenerator R acts as a heat exchanger. It stores heat when hot gas flows
from left to right and releases heat when colder gas flows from right to left.

Idealized Stirling cycle:

1-2: Isothermal compression at temperature TL.
Displacer stationary at left. Piston moving left.

2-3: Isochoric heating up at volume V2.
Piston stationary at left. Displacer moving right.

3-4: Isothermal expansion at temperature TH .
Displacer and piston moving right.

4-1: Isochoric cooling down at volume V1.
Piston stationary at right. Displacer moving left.

Some of the heat is recycled in the regenerator. This amount should not be
counted in the expression η = ∆Wout/∆Qin of the efficiency.
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Exercises:

B Entropy change by expanding ideal gas [tex1]

B Heating the air in a room [tex2]

B Carnot engine of a classical ideal gas [tex3]

B Carnot engine of an ideal paramagnet [tex4]

B Idealized Otto cycle [tex8]

B Adiabates of the classical ideal gas [tex7]

B Work extracted from finite heat reservoir in infinite environment [tex9]

B Work extracted from finite heat reservoir in finite environment [tex10]

B Mayer’s relation for heat capacities of the classical ideal gas [tex12]

B Room heater: electric radiator versus heat pump [tex13]

B Idealized Diesel cycle [tex16]

B Roads from 1 to 2: isothermal, isentropic, isochoric, isobaric [tex25]

B Positive and negative heat capacities [tex26]

B Ideal-gas engine with two-step cycle I [tex106]

B Ideal-gas engine with two-step cycle II [tex107]

B Joule cycle [tex108]

B Idealized Stirling cycle [tex131]

B Circular heat engine I [tex147]

B Circular heat engine II [tex148]

B Square heat engine [tex149]

B Work performance and heat transfer [tex155]
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