The Ising Model I ..

The model named after Ernst Ising (pronounced “easing”) was introduced
in 1925 to explain ferromagnetism based on a (postulated) interaction that
was discovered a year later: the exchange interaction.

The Hamiltonian of the Ising model on a D-dimensional lattice of any type
with sites labeled 7 is often rendered in the general form,

H=— Z JijO'Z'O'j — ZI‘LO’z
(ig) i

where (ij) are nearest-neighbor pairs of sites. The degrees of freedom are
characterized by binary variables o; = 41, each coupled to its nearest neigh-
bors via J;; and to a local external field H;.

Ising magnet:

The primary interpretation of the o; is that of localized electron spins with
a strongly uniaxial exchange coupling.

For the case of a uniform coupling and a uniform external field parallel to
the easy axis, the simplified Hamiltonian reads,

B J >0 : ferromagnet
H= _J; 0i; = H Z 7i { J <0 : antiferromagnet
1) ?

Canonical partition function:

N = Tr[e_mq = Z exp BJZO’Z'O']' + ﬁHZO’i
01,..-;ON (i5) 7
Gibbs free energy: G(T,H,N) = —kgTIn Zn(T, H).
1
Enthalpy: E(T,H,N) = 9 InZy = —Tr[He 7M.
op ZN

Entropy: S(T,H,N) = %(E - G).

Magnetization: M (T, H, N) = — (g_fl)m = ZLNTI zi:gle—mi] — zi:<az>
92
Heat capacity: Cy(T,H,N) = lﬁg,@za—ﬁ2 InZy.
92
Susceptibility: x7(T, H, N) = 5718H2 InZy.
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Ising lattice gas:

Consider a volume V' in D-dimensional space and superimpose an imaginary
lattice of cell size v.. The (fixed) number of cells is N = V/v..

Each cell is large enough to contain one molecule of a one-component fluid.
The hard-core repulsion between molecules prohibits multiple cell occupancy.
Molecules in nearest-neighbor cells experience an attractive contact force.

Potential energy between particles in cells ¢ and j:
oo ifi=y,
Vij =4 —u if 4,7 are nearest —neighbor cells,
0 otherwise.

Cell occupancy: 7, = 0,1 (lattice gas variable).

The lattice gas neglects the kinetic energy of particles, which does not imply
zero pressure even in the absence of an interaction.

Lattice gas Hamiltonian: H = —u Z TiTj.
(i7)
Canonical partition function: Zy, = Z exp BUZTZ@- 0N S, 72
TLys TN (i)
A switch of ensemble removes the constraint ), 7, = N,,.

Grand partition function:

7 — f: eﬁMNpZNp — Z exp ﬂuZTiTj'f‘ﬁMZTi
Np=0 T (ig) ‘

15--TN

The number of cells, N = V/u., is fixed, whereas the number N, of particles
(or occupied cells) is controlled by the chemical potential p.

Grand potential: Q(T,V,u) = —kgTIn Z(T,V, ).

p (89)
ressure: p = — \ == .
ov ),
m

o0
Average number of particles: N, = — < ) .
TV

o
0N
Entropy: S = — (8_T) VM.



Mapping between Ising lattice gas and Ising magnet:
Variable transformation: 7; = 5(1 —0;) & o0, =1-27.

Coordination number: z  (each cell has z nearest neighbors).

Z = Z exp iﬁuz |:0—Z'0-j —(0s+0j) + 1} + %5#2 [1 - O_i:|
(i) i

= Z exp iﬁu;aiaj — Eﬁzu%— %ﬁu] zi:ai
X exp ({éﬂuz—l— %ﬂu} N) ,

1 1
where we have used Zai = 522 Oi, Z = §zN.
(i5) i (i5)
1 1 1 1 1 1
Set ZUZJ’ —L—lzu+§u]—H = guz+§u:—H—§zJ.

7777 ON

Z(T,V,n) = e PN(H+32) Z exp BJZUN]- + BHZ@-
o1 (i) i

v

v~

Zn(T,H)

— Relation between grand partition function Z(T,V, u) of Ising lattice
gas and canonical partition function Zy (7, H) of Ising ferromagnet.

— The degrees of freedom (subject to interactions) are particles, i.e. oc-
cupied cells, in the lattice gas and spins in the magnet.

— The average number NV, of particles is controlled by the chemical po-
tential p, whereas the number N of spins is fixed.

— The extensivity of the system is encoded in the volume V' = Nuv, of the
lattice gas and in the number N of spins in the magnet.

— The primary thermodynamic potentials are the grand potential €2 for
the lattice gas and the Gibbs free energy GG for the magnet.

~ Ideal lattice gas [tex172): u=0 = Z = [1+ €] (S

— Langevin/Brillouin paramagnet [tex85]: v =0 = M = N tanh H.



Transfer matrix solution of the Ising magnet in D = 1:

The Ising magnet in D = 1 (a linear chain of N sites) is a perfect model for
a gentle introduction to the transfer matrix method of exact analysis.

N
1
Hamiltonian: H = — Z |:J0'10'l+1 + §H(al + 0'l+1):| .
I+1

Periodic boundary conditions: oy.1 = 0.
Scaled parameters: J = BJ, H= BH.

Canonical partition function:

N
A 1~
ZN = Z exp (Z [JO'[O’[.H + §H(0'L + O'l+1):|>

where the functions,
o 1 -
V(o1,0141) = exp | Joyo141 + §H(Ul +0141) |,

are the elements, (0;|V|o;11), of the transfer matrix,

v [ VELFD) VL= eIt =7
V(=1,+1) V(=1,-1) el )
Consider N = 2: Summing V' (o1, 02)V (09,01) over oy yields the diagonal
elements of V- V = V2 Summing over o, yields the trace Tr[V?].

The N-fold sum in Zy is equivalent to an N-fold multiplication of identical
matrices V and the evaluation of the trace of the product matrix:

Zy =Tr[VY].
Diagonalization of symmetric matrix V by orthogonal matrix O [tex185]:
_ A 0 . [ cos¢p —sing
1 V.0 — - -
0-Vv-0 ( 0 )\>’ 0 ( sin ¢ cosgb)'

The matrix O~ - V - O is diagonal if cot(2¢) = e*’ sinh H.

Eigenvalues: AL = e’ {coshf[ + \/s.inh2 H+ e4jJ .
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Partition function dominated by largest eigenvalue A, of transfer matrix:
Zn = A4 AN = AN+ (A AN AN,

Gibbs free energy in the thermodynamic limit:

G(T,H,N)=—J — NkgTIn (coshf]—l— \/sinhzf[—{—e—‘lj).

The magnetization M (T, H, N) and entropy S(T, H, N) are first derivatives
of G. The enthalpy E(T, H, N) = G+T'S and the internal energy U(T, H, N) =
E + HM follow directly [tex185]

The response functions Cy (T, H, N) (heat capacity) and xr (7, H, N) (sus-
ceptibility) are second derivatives of G [tex185].

Expectation values via transfer matrix:

Joint probability distribution:
1 1

—BH _ —V(Jl7 02)V(U27 03) U V(UN’ 0-1>‘

P = —
(017 7UN) ZNe ZN

Magnetization per site, previously derived from G(T, H, N), here derived as
an expectation value:

M(T,H) = (o:) = Y_ 0;P(o1,...,0n).

The periodic boundary conditions make (o;) site-independent, facilitating
the matrix representation,

<ai>:ZiNTr[S-VN], sz( [1) _?).

The transformation O which diagonalized V makes S nondiagonal. The gain
far outweighs the loss. We infer [tex189]:

1 e. O cos2¢ —sin2¢
0S8 O_<—Sin2¢ —C082¢>’

L 1 cos2¢p —sin2¢ M0
<Ui>—1\}1—>r%oZ_NTr {(—sianﬁ —cos2¢)'( 0 MY

N _ \N
T -~ - _
—]\}1_{1(1)0(:032gzﬁ)\f+>\iV cos 2¢,

in agreement with the result obtained previously in [tex189).
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Correlation functions via transfer matrix:

The two-spin correlation function is of primary interest and our focus here:

<O'Z‘O'j>: Z O'Z'O'jP<O'1,...,O'N).

The periodic boundary conditions make (0;0;,,) independent of site ¢, which
facilitates the following matrix representation:

<0ia¢+n>—LTr[S V'S v
ZN

The combination of diagonalizing N matrices V and undiagonalizing two
matrices S keeps the matrix product manageable [tex189]:

1 cos2¢p —sin2¢ Ay 0
<0i0i+n> - Z_N {( —sin2¢ —cos2¢ ) . ( 6 A )

cos2¢ —sin2¢ /\f_" 0
"\ —sin2¢ —cos2¢ | 0 AV

AV —\N Xi)\f_" + AR AN
= COS2 2¢ W + sm 2¢ Af T )\Z\_f
2% cos? 20 + ()\—> sin? 2¢.

W

The covariance is a function that decays to zero for n — oo even in the
presence of a non-vanishing magnetization (o;) [tex189]:

C(n) = (0:0540) — () (0spn) = [1+ ¢ sinh® H] ™ (%)n

Dominant long-distance asymptotics: C'(n) ~ e/,

Correlation length: &(T, H) = [In(Ay/A_)] "

Ising lattice gas in D = 1:

We employ the mapping established earlier in this module for the transcrip-
tion of the transfer matrix solution:

N

U U+ pu
J=-, H=-— ,
4 2
Here u is the interaction energy between occupied cells of volume v, and p
the chemical potential, which controls cell occupancy.

V =Nv,, H=pBH, J=3J
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Ideal gas limit:
We use the limit u = 0 as a benchmark for the study of interaction effects.

7 = e VOH [2 COSh(/BH)]N = [1 + eﬁu} V/ve

1%
= Q(T,V,p) = —pV = —kpTln Z = —U—k:BTln (1+ ™).

C
From first derivatives we extract explicit expressions for the equation of state
and the entropy [tex172]:

v N (D
NkgT N, N )’
S N, N, N, N,
=—2Lh2L-(1-2)n(1-2).
Nkg N N N N
° 1.0»
4r ILG equation of state 0_8:» ILG entropy

SINkgT

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
Np/N Np/N

— Average lattice-gas density: N,/N.
— Classical ideal gas limit: N,/N -0 = pV — NkgT.

— The excess pressure of the ILG is due to the fact that each particle
occupies a nonzero volume v.. The pressure diverges when the lattice
is fully occupied.

— The entropy rises from zero as N,/N increases from zero, reaches a
maximum at N,/N = 1, and returns to zero as N,/N — 1.

— The curve has a particle/hole mirror symmetry.
— The empty lattice and the fully occupied lattice have zero entropy.

— The half-full lattice comprises the largest number of microstates, which
produces the entropy maximum.



Ising lattice gas equation of state in D = 1:

The thermodynamic equation of state of the Ising lattice gas can be inferred
directly from the grand partition function in paramagnetic form [tex194]:

pV - ( : 2 —Bu
NkBT_w+ln coshw—i-\/smh w+e ),
Ny, 1 ) sinh w

N o2 \/sinh2w + e—Bu

where w = %ﬁ (u + p) is the parameter. The explicit ILG result is readily
recovered in the limit u — 0 [tex194].

f uksgT=0,-2 -4, -6,-8,-10
ukgT=0,05,1,25 repulsive coupling

attractive coupling

0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Np/N N,/N

— For attractive coupling (v > 0), the ILG curve is the highest. For
repulsive coupling (u > 0), it is the lowest.

— At fixed volume and temperatures, the curves represent a measure of
pressure per cell.

— All curves are monotonic. Each occupied cell adds pressure, irrespective
of interaction.

— An attractive particle interaction slows down the rise of pressure when
particles are added.

— Near saturation, the pressure rises steeply and diverges irrespective of
interaction. This is a steric effect.

— The effect of a repulsive particle interaction is very weak at low density.

— The repulsive interaction quickly gains traction around half filling when
nearest-neighbor occupied cells are harder to avoid.

— For strong repulsive interaction, a high plateau develops at more than
half filling.



L WkgT =0, -2, -4, -6, -8, 10

I
T

uksgT=0,05,1,25

attractive coupling 15] repulsive coupling

0 1 1 1 1
0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0
Ny/N Np/N

— At fixed volume and temperatures, these curves represent a measure of
pressure per particle.

— For attractive coupling (u > 0), the ILG curve is again the highest and
for repulsive coupling (u > 0) the lowest.

— Adding particles at low density reduces the pressure per particle when
they attract one another sufficiently strongly.

— Adding particles at more than half filling reduces the pressure per par-
ticle when they repel one another sufficiently strongly.

— in the low-density limit, N,/N — 0, the result pV/N,kgT =1 for the
classical ideal gas is recovered irrespective of interaction.

Ising lattice gas entropy in D = 1:

A parametric expression for the entropy, {S(w)/Nkg, N,/N}, is readily de-
rived from the grand partition function in a similar fashion [tex195].

1.0 1.0
ukgT=0,1,2,5 10 r u/kgT =0, -1, -2, -5, =10
0.8+ attractive coupling 0.8F repulsive coupling
o 06 o 06]
= =
%) ) [
04r 04r
0.2+ 0_2;
0.0 : : : : 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0

Np/N Np/N



— At fixed particle density, both attractive and repulsive interactions of
increasing strength reduce the entropy. However, the entropy reduction
is associated with different kinds of ordering tendencies.

— In the ILG limit u — 0, the entropy is dominated by the distribution
of occupied (vacant) cells below (above) half filling.

— Attractive coupling between occupied cells favors clusters below half
filling and (effectively) clusters of vacant cells above half filling.

— Coupled clusters act like compound particles or compound vacancies.
Their number decreases as the (attractive) coupling strength increases.
The highest entropy is realized at half filling.

— A repulsive interaction between occupied cells suppresses clustering of
particles below half filling and (effectively) vacancies above half filling.

— For low densities of particles or vacancies, the effect of a repulsive
interaction is very small. Randomly placed particles or vacancies at
low density produce few nearest neighbors.

— The highest impact of a repulsive interaction is realized at half filling.
Here the only microstates which avoid clustering of particles are ordered
states where occupied and vacant cells alternate.

— The particle-hole symmetry of occupied and vacant cells is differently
manifest for attractive and repulsive interaction.

— An additional symmetry makes the dependence of S/Nkg on u/kgT
independent of the sign of u at half filling.

The entropy per cell as a function scaled temperature kgT'/|u| is then the
same monotonic function for attractive interaction (u > 0) and repulsive
interaction (u > 0) [tex201]. The entropy of the ideal lattice gas (u = 0) is
independent of temperature.

0.8
In2

0.6r
<
Z 04r half filling
%))

attractive of repulsive interaction
0.2
0.0k L L . .
0.0 0.2 0.4 0.6 0.8 1.0

kg T/|ula
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U/NKgT

Ising lattice gas internal energy in D = 1:

A parametric expression for the internal energy can be constructed via Euler’s
equation,

U S pV u \ N,
U=TS—-pV +uN, = - — Ny — —— | =P
PV i NksT  Nks  NkgT | ( v k:BT) N
from the expressions established earlier:
U Pu[sinhw + coshw|[sinh w + V/sinh? w + e=04]
NkgT 2 /sinh? w + e=#[cosh w + v/sinh® w + e=F] 7
% 1 " sinh w
N 2 \/sinh2 w + e P
0.5} WkgT =0, 1,2, 5,10
attractive coupling ukeT =0, -1, -2, -5, -10
0.0 ) repulsive coupling
=
-0.5} <
S 4
-1.0f
-15} 0
2.0 : ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
Ny/N N,/N

— An attractive coupling produces a negative internal energy of significant
magnitude even for relatively small densities due to clustering.

— A repulsive interaction makes configurations with occupied nearest-
neighbor sites energetically unfavorable.

— If less then half the lattice sites are occupied, nearest-neighbor repulsion
is readily avoided by strong repusive coupling.
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