The Ising Model I $_{[tsc18]}$

The model named after Ernst Ising (pronounced "easing") was introduced in 1925 to explain ferromagnetism based on a (postulated) interaction that was discovered a year later: the exchange interaction.

The Hamiltonian of the Ising model on a \mathcal{D} -dimensional lattice of any type with sites labeled i is often rendered in the general form,

$$
\mathcal{H} = -\sum_{\langle ij \rangle} J_{ij} \sigma_i \sigma_j - \sum_i H_i \sigma_i.
$$

where $\langle ij \rangle$ are nearest-neighbor pairs of sites. The degrees of freedom are characterized by binary variables $\sigma_i = \pm 1$, each coupled to its nearest neighbors via J_{ij} and to a local external field H_i .

Ising magnet:

The primary interpretation of the σ_i is that of localized electron spins with a strongly uniaxial exchange coupling.

For the case of a uniform coupling and a uniform external field parallel to the easy axis, the simplified Hamiltonian reads,

$$
\mathcal{H} = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j - H \sum_i \sigma_i \quad \begin{cases} \quad J > 0 \quad : \text{ ferromagnet} \\ \quad J < 0 \quad : \text{ antiferromagnet} \end{cases}
$$

Canonical partition function:

$$
Z_N = \text{Tr}\left[e^{-\beta \mathcal{H}}\right] = \sum_{\sigma_1,\dots,\sigma_N} \exp\left(\beta J \sum_{\langle ij \rangle} \sigma_i \sigma_j + \beta H \sum_i \sigma_i\right).
$$

Gibbs free energy: $G(T, H, N) = -k_BT \ln Z_N(T, H)$. Enthalpy: $E(T, H, N) = -\frac{\partial}{\partial x}$ 1 $\text{Tr}[\mathcal{H}e^{-\beta \mathcal{H}}].$

 $\frac{\partial}{\partial \beta} \ln Z_N =$ Z_N Entropy: $S(T, H, N) = \frac{1}{T}$ T $(E - G)$.

Magnetization:
$$
M(T, H, N) = -\left(\frac{\partial G}{\partial H}\right)_{TN} = \frac{1}{Z_N} \text{Tr}\left[\sum_i \sigma_i e^{-\beta H}\right] = \sum_i \langle \sigma_i \rangle.
$$

Heat capacity: $C_H(T, H, N) = k_\text{B} \beta^2 \frac{\partial^2}{\partial \beta^2}$ $\frac{\delta}{\partial \beta^2} \ln Z_N$.

Susceptibility: $\chi_T(T, H, N) = \beta^{-1} \frac{\partial^2}{\partial H}$ $\frac{\delta}{\partial H^2} \ln Z_N$.

Ising lattice gas:

Consider a volume V in \mathcal{D} -dimensional space and superimpose an imaginary lattice of cell size v_c . The (fixed) number of cells is $N = V/v_c$.

Each cell is large enough to contain one molecule of a one-component fluid. The hard-core repulsion between molecules prohibits multiple cell occupancy. Molecules in nearest-neighbor cells experience an attractive contact force.

Potential energy between particles in cells i and j :

$$
V_{ij} = \begin{cases} \n\infty & \text{if } i = j, \\ \n-u & \text{if } i, j \text{ are nearest-neighbor cells,} \\ \n0 & \text{otherwise.} \n\end{cases}
$$

Cell occupancy: $\tau_i = 0, 1$ (lattice gas variable).

The lattice gas neglects the kinetic energy of particles, which does not imply zero pressure even in the absence of an interaction.

Lattice gas Hamiltonian: $\mathcal{H} = -u \sum$ $\langle ij \rangle$ $\tau_i \tau_j$. Canonical partition function: $Z_{N_{\rm p}} = \sum$ τ_1, \ldots, τ_N exp $\sqrt{ }$ $\bigg(\beta u \sum_{\langle ij \rangle}$ $\tau_i \tau_j$ \setminus $\int \delta_{N_{\rm p},\sum_i \tau_i}$.

A switch of ensemble removes the constraint $\sum_i \tau_i = N_p$.

Grand partition function:

$$
Z = \sum_{N_{\rm p}=0}^{\infty} e^{\beta \mu N_{\rm p}} Z_{N_{\rm p}} = \sum_{\tau_1, ..., \tau_N} \exp \left(\beta u \sum_{\langle ij \rangle} \tau_i \tau_j + \beta \mu \sum_i \tau_i \right).
$$

The number of cells, $N = V/v_c$, is fixed, whereas the number $N_{\rm p}$ of particles (or occupied cells) is controlled by the chemical potential μ .

Grand potential: $\Omega(T, V, \mu) = -k_{\text{B}}T \ln Z(T, V, \mu)$.

$$
\text{Pressure: } p = -\left(\frac{\partial \Omega}{\partial V}\right)_{T\mu}.
$$

Average number of particles: $N_{\rm p} = \left(\frac{\partial \Omega}{\partial \mu}\right)_{TV}$.

Entropy:
$$
S = -\left(\frac{\partial \Omega}{\partial T}\right)_{V\mu}
$$
.

Mapping between Ising lattice gas and Ising magnet:

Variable transformation: $\tau_i =$ 1 $\frac{1}{2}(1-\sigma_i) \quad \Leftrightarrow \quad \sigma_i = 1-2\tau_i.$ Coordination number: z (each cell has z nearest neighbors).

$$
Z = \sum_{\sigma_1, \dots, \sigma_N} \exp \left(\frac{1}{4} \beta u \sum_{\langle ij \rangle} \left[\sigma_i \sigma_j - (\sigma_i + \sigma_j) + 1 \right] + \frac{1}{2} \beta \mu \sum_i \left[1 - \sigma_i \right] \right).
$$

=
$$
\sum_{\sigma_1, \dots, \sigma_N} \exp \left(\frac{1}{4} \beta u \sum_{\langle ij \rangle} \sigma_i \sigma_j - \left[\frac{1}{4} \beta z u + \frac{1}{2} \beta \mu \right] \sum_i \sigma_i \right)
$$

$$
\times \exp \left(\left[\frac{1}{8} \beta u z + \frac{1}{2} \beta \mu \right] N \right),
$$

where we have used \sum $\langle ij \rangle$ $\sigma_i =$ 1 2 $z\sum$ i $\sigma_i, \quad \sum$ $\langle ij \rangle$ = 1 2 zN.

Set
$$
\frac{1}{4}u = J
$$
, $-\left[\frac{1}{4}zu + \frac{1}{2}\mu\right] = H$ $\Rightarrow \frac{1}{8}uz + \frac{1}{2}\mu = -H - \frac{1}{2}zJ$.

$$
Z(T, V, \mu) = e^{-\beta N (H + \frac{1}{2}zJ)} \underbrace{\sum_{\sigma_1, ..., \sigma_N} \exp \left(\beta J \sum_{\langle ij \rangle} \sigma_i \sigma_j + \beta H \sum_i \sigma_i \right)}_{Z_N(T, H)}.
$$

- Relation between grand partition function $Z(T, V, \mu)$ of Ising lattice gas and canonical partition function $Z_N(T, H)$ of Ising ferromagnet.
- The degrees of freedom (subject to interactions) are particles, i.e. occupied cells, in the lattice gas and spins in the magnet.
- The average number $N_{\rm p}$ of particles is controlled by the chemical potential μ , whereas the number N of spins is fixed.
- The extensivity of the system is encoded in the volume $V = Nv_c$ of the lattice gas and in the number N of spins in the magnet.
- The primary thermodynamic potentials are the grand potential Ω for the lattice gas and the Gibbs free energy G for the magnet.
- Ideal lattice gas [tex172]: $u = 0 \Rightarrow Z = [1 + e^{\beta \mu}]^{V/v_c}$.
- Langevin/Brillouin paramagnet [tex85]: $u = 0$ ⇒ $M = N \tanh H$.

Transfer matrix solution of the Ising magnet in $\mathcal{D} = 1$:

The Ising magnet in $\mathcal{D} = 1$ (a linear chain of N sites) is a perfect model for a gentle introduction to the transfer matrix method of exact analysis.

Hamiltonian:
$$
\mathcal{H} = -\sum_{l+1}^{N} \left[J\sigma_l \sigma_{l+1} + \frac{1}{2} H(\sigma_l + \sigma_{l+1}) \right].
$$

Periodic boundary conditions: $\sigma_{N+1} \equiv \sigma_1$.

Scaled parameters: $\hat{J} \doteq \beta J$, $\hat{H} \doteq \beta H$.

Canonical partition function:

$$
Z_N = \sum_{\sigma_1,\dots,\sigma_N} \exp\left(\sum_{l=1}^N \left[\hat{J}\sigma_l \sigma_{l+1} + \frac{1}{2}\hat{H}(\sigma_L + \sigma_{l+1})\right]\right)
$$

=
$$
\sum_{\sigma_1,\dots,\sigma_N} V(\sigma_1, \sigma_2) V(\sigma_2, \sigma_3) \cdots V(\sigma_N, \sigma_1),
$$

where the functions,

$$
V(\sigma_l, \sigma_{l+1}) = \exp\left(\hat{J}\sigma_l \sigma_{l+1} + \frac{1}{2}\hat{H}(\sigma_l + \sigma_{l+1})\right),\,
$$

are the elements, $\langle \sigma_l | \mathbf{V} | \sigma_{l+1} \rangle$, of the transfer matrix,

$$
\mathbf{V} = \begin{pmatrix} V(+1, +1) & V(+1, -1) \\ V(-1, +1) & V(-1, -1) \end{pmatrix} = \begin{pmatrix} e^{\hat{J} + \hat{H}} & e^{-\hat{J}} \\ e^{-\hat{J}} & e^{\hat{J} - \hat{H}} \end{pmatrix}.
$$

Consider $N = 2$: Summing $V(\sigma_1, \sigma_2)V(\sigma_2, \sigma_1)$ over σ_2 yields the diagonal elements of $\mathbf{V} \cdot \mathbf{V} = \mathbf{V}^2$. Summing over σ_1 yields the trace Tr[\mathbf{V}^2].

The N-fold sum in Z_N is equivalent to an N-fold multiplication of identical matrices V and the evaluation of the trace of the product matrix:

$$
Z_N = \text{Tr}\big[\mathbf{V}^N \big].
$$

Diagonalization of symmetric matrix V by orthogonal matrix O [tex185]:

$$
\mathbf{O}^{-1} \cdot \mathbf{V} \cdot \mathbf{O} = \begin{pmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{pmatrix}, \quad \mathbf{O} \doteq \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}.
$$

The matrix $\mathbf{O}^{-1} \cdot \mathbf{V} \cdot \mathbf{O}$ is diagonal if $\cot(2\phi) = e^{2\hat{J}} \sinh \hat{H}$.

Eigenvalues:
$$
\lambda_{\pm} = e^{\hat{J}} \left[\cosh \hat{H} \pm \sqrt{\sinh^2 \hat{H} + e^{-4\hat{J}}} \right]
$$

.

Partition function dominated by largest eigenvalue λ_+ of transfer matrix:

$$
Z_N = \lambda_+^N + \lambda_-^N = \lambda_+^N \left[1 + (\lambda_-/\lambda_+)^N \right] \stackrel{N \to \infty}{\leadsto} \lambda_+^N.
$$

Gibbs free energy in the thermodynamic limit:

$$
G(T, H, N) = -J - Nk_{\rm B}T \ln \left(\cosh \hat{H} + \sqrt{\sinh^2 \hat{H} + e^{-4\hat{J}}} \right).
$$

The magnetization $M(T, H, N)$ and entropy $S(T, H, N)$ are first derivatives of G. The enthalpy $E(T, H, N) = G + TS$ and the internal energy $U(T, H, N) =$ $E + HM$ follow directly [tex185]

The response functions $C_H(T, H, N)$ (heat capacity) and $\chi_T(T, H, N)$ (susceptibility) are second derivatives of G [tex185].

Expectation values via transfer matrix:

Joint probability distribution:

$$
P(\sigma_1,\ldots,\sigma_N)=\frac{1}{Z_N}e^{-\beta\mathcal{H}}=\frac{1}{Z_N}V(\sigma_1,\sigma_2)V(\sigma_2,\sigma_3)\cdots V(\sigma_N,\sigma_1).
$$

Magnetization per site, previously derived from $G(T, H, N)$, here derived as an expectation value:

$$
\bar{M}(T,H) = \langle \sigma_i \rangle = \sum_{\sigma_1,\dots,\sigma_N} \sigma_i P(\sigma_1,\dots,\sigma_N).
$$

The periodic boundary conditions make $\langle \sigma_i \rangle$ site-independent, facilitating the matrix representation,

$$
\langle \sigma_i \rangle = \frac{1}{Z_N} \text{Tr} [\mathbf{S} \cdot \mathbf{V}^N], \quad \mathbf{S} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

The transformation O which diagonalized V makes S nondiagonal. The gain far outweighs the loss. We infer [tex189]:

$$
\mathbf{O}^{-1} \cdot \mathbf{S} \cdot \mathbf{O} = \begin{pmatrix} \cos 2\phi & -\sin 2\phi \\ -\sin 2\phi & -\cos 2\phi \end{pmatrix},
$$

$$
\langle \sigma_i \rangle = \lim_{N \to \infty} \frac{1}{Z_N} \text{Tr} \left[\begin{pmatrix} \cos 2\phi & -\sin 2\phi \\ -\sin 2\phi & -\cos 2\phi \end{pmatrix} \cdot \begin{pmatrix} \lambda_+^N & 0 \\ 0 & \lambda_-^N \end{pmatrix} \right]
$$

$$
= \lim_{N \to \infty} \cos 2\phi \frac{\lambda_+^N - \lambda_-^N}{\lambda_+^N + \lambda_-^N} = \cos 2\phi,
$$

in agreement with the result obtained previously in [tex189].

Correlation functions via transfer matrix:

The two-spin correlation function is of primary interest and our focus here:

$$
\langle \sigma_i \sigma_j \rangle = \sum_{\sigma_1, \dots, \sigma_N} \sigma_i \sigma_j P(\sigma_1, \dots, \sigma_N).
$$

The periodic boundary conditions make $\langle \sigma_i \sigma_{i+n} \rangle$ independent of site i, which facilitates the following matrix representation:

$$
\langle \sigma_i \sigma_{i+n} \rangle = \frac{1}{Z_N} \text{Tr} \left[\mathbf{S} \cdot \mathbf{V}^n \cdot \mathbf{S} \cdot \mathbf{V}^{N-n} \right].
$$

The combination of diagonalizing N matrices V and undiagonalizing two matrices S keeps the matrix product manageable [tex189]:

$$
\langle \sigma_i \sigma_{i+n} \rangle = \frac{1}{Z_N} \left[\begin{pmatrix} \cos 2\phi & -\sin 2\phi \\ -\sin 2\phi & -\cos 2\phi \end{pmatrix} \cdot \begin{pmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{pmatrix} \right]
$$

$$
\cdot \begin{pmatrix} \cos 2\phi & -\sin 2\phi \\ -\sin 2\phi & -\cos 2\phi \end{pmatrix} \cdot \begin{pmatrix} \lambda_+^{N-n} & 0 \\ 0 & \lambda_-^{N-n} \end{pmatrix} \right]
$$

$$
= \cos^2 2\phi \frac{\lambda_+^N - \lambda_-^N}{\lambda_+^N + \lambda_-^N} + \sin^2 2\phi \frac{\lambda_-^n \lambda_+^{N-n} + \lambda_+^n \lambda_-^{N-n}}{\lambda_+^N + \lambda_-^N}
$$

$$
\xrightarrow{N \to \infty} \cos^2 2\phi + \left(\frac{\lambda_-}{\lambda_+}\right)^n \sin^2 2\phi.
$$

The covariance is a function that decays to zero for $n \to \infty$ even in the presence of a non-vanishing magnetization $\langle \sigma_i \rangle$ [tex189]:

$$
C(n) \doteq \langle \sigma_i \sigma_{i+n} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+n} \rangle = \left[1 + e^{4\hat{J}} \sinh^2 \hat{H} \right]^{-1} \left(\frac{\lambda_-}{\lambda_+} \right)^n.
$$

Dominant long-distance asymptotics: $C(n) \sim e^{-n/\xi}$.

Correlation length: $\xi(T, H) = [\ln(\lambda_+/\lambda_-)]^{-1}$.

Ising lattice gas in $\mathcal{D} = 1$:

We employ the mapping established earlier in this module for the transcription of the transfer matrix solution:

$$
Z(T, V, \mu) = e^{-N\beta(H+J)} Z_N(T, H) = e^{-N\hat{H}} \left[\cosh(\hat{H}) + \sqrt{\sinh^2(\hat{H}) + e^{-4\hat{J}}} \right]^N,
$$

$$
J = \frac{u}{4}, \quad H = -\frac{u+\mu}{2}, \quad V = Nv_c, \quad \hat{H} \doteq \beta H, \quad \hat{J} \doteq \beta J.
$$

Here u is the interaction energy between occupied cells of volume v_c and μ the chemical potential, which controls cell occupancy.

Ideal gas limit:

We use the limit $u = 0$ as a benchmark for the study of interaction effects.

$$
Z = e^{-N\beta H} \left[2 \cosh(\beta H) \right]^N = \left[1 + e^{\beta \mu} \right]^{V/v_c}
$$

\n
$$
\Rightarrow \Omega(T, V, \mu) = -pV = -k_B T \ln Z = -\frac{V}{v_c} k_B T \ln \left(1 + e^{\beta \mu} \right).
$$

From first derivatives we extract explicit expressions for the equation of state and the entropy [tex172]:

- Average lattice-gas density: $N_{\rm p}/N$.
- Classical ideal gas limit: N_{p}/N → 0 ⇒ pV → $Nk_{B}T$.
- The excess pressure of the ILG is due to the fact that each particle occupies a nonzero volume v_c . The pressure diverges when the lattice is fully occupied.
- The entropy rises from zero as $N_{\rm p}/N$ increases from zero, reaches a maximum at $N_{\rm p}/N = \frac{1}{2}$ $\frac{1}{2}$, and returns to zero as $N_{\rm p}/N \rightarrow 1$.
- The curve has a particle/hole mirror symmetry.
- The empty lattice and the fully occupied lattice have zero entropy.
- The half-full lattice comprises the largest number of microstates, which produces the entropy maximum.

Ising lattice gas equation of state in $\mathcal{D} = 1$:

The thermodynamic equation of state of the Ising lattice gas can be inferred directly from the grand partition function in paramagnetic form [tex194]:

$$
\frac{pV}{Nk_BT} = w + \ln\left(\cosh w + \sqrt{\sinh^2 w + e^{-\beta u}}\right),\,
$$

$$
\frac{N_p}{N} = \frac{1}{2}\left[1 + \frac{\sinh w}{\sqrt{\sinh^2 w + e^{-\beta u}}}\right],
$$

where $w = \frac{1}{2}$ $\frac{1}{2}\beta(u+\mu)$ is the parameter. The explicit ILG result is readily recovered in the limit $u \to 0$ [tex194].

- For attractive coupling $(u > 0)$, the ILG curve is the highest. For repulsive coupling $(u > 0)$, it is the lowest.
- At fixed volume and temperatures, the curves represent a measure of pressure per cell.
- All curves are monotonic. Each occupied cell adds pressure, irrespective of interaction.
- An attractive particle interaction slows down the rise of pressure when particles are added.
- Near saturation, the pressure rises steeply and diverges irrespective of interaction. This is a steric effect.
- The effect of a repulsive particle interaction is very weak at low density.
- The repulsive interaction quickly gains traction around half filling when nearest-neighbor occupied cells are harder to avoid.
- For strong repulsive interaction, a high plateau develops at more than half filling.

- At fixed volume and temperatures, these curves represent a measure of pressure per particle.
- For attractive coupling $(u > 0)$, the ILG curve is again the highest and for repulsive coupling $(u > 0)$ the lowest.
- Adding particles at low density reduces the pressure per particle when they attract one another sufficiently strongly.
- Adding particles at more than half filling reduces the pressure per particle when they repel one another sufficiently strongly.
- in the low-density limit, $N_{\rm p}/N \rightarrow 0$, the result $pV/N_{\rm p}k_BT = 1$ for the classical ideal gas is recovered irrespective of interaction.

Ising lattice gas entropy in $\mathcal{D} = 1$:

A parametric expression for the entropy, $\{S(w)/Nk_B, N_p/N\}$, is readily derived from the grand partition function in a similar fashion [tex195].

- At fixed particle density, both attractive and repulsive interactions of increasing strength reduce the entropy. However, the entropy reduction is associated with different kinds of ordering tendencies.
- In the ILG limit $u \to 0$, the entropy is dominated by the distribution of occupied (vacant) cells below (above) half filling.
- Attractive coupling between occupied cells favors clusters below half filling and (effectively) clusters of vacant cells above half filling.
- Coupled clusters act like compound particles or compound vacancies. Their number decreases as the (attractive) coupling strength increases. The highest entropy is realized at half filling.
- A repulsive interaction between occupied cells suppresses clustering of particles below half filling and (effectively) vacancies above half filling.
- For low densities of particles or vacancies, the effect of a repulsive interaction is very small. Randomly placed particles or vacancies at low density produce few nearest neighbors.
- The highest impact of a repulsive interaction is realized at half filling. Here the only microstates which avoid clustering of particles are ordered states where occupied and vacant cells alternate.
- The particle-hole symmetry of occupied and vacant cells is differently manifest for attractive and repulsive interaction.
- An additional symmetry makes the dependence of S/Nk_B on u/k_BT independent of the sign of u at half filling.

The entropy per cell as a function scaled temperature $k_BT/|u|$ is then the same monotonic function for attractive interaction $(u > 0)$ and repulsive interaction $(u > 0)$ [tex201]. The entropy of the ideal lattice gas $(u = 0)$ is independent of temperature.

Ising lattice gas internal energy in $\mathcal{D} = 1$:

A parametric expression for the internal energy can be constructed via Euler's equation,

$$
U = TS - pV + \mu N_{\rm p} \quad \Rightarrow \frac{U}{Nk_B T} = \frac{S}{Nk_B} - \frac{pV}{Nk_B T} + \left(2w - \frac{u}{k_B T}\right) \frac{N_{\rm p}}{N},
$$

from the expressions established earlier:

$$
\frac{U}{Nk_BT} = -\frac{\beta u}{2} \frac{[\sinh w + \cosh w][\sinh w + \sqrt{\sinh^2 w + e^{-\beta u}}]}{\sqrt{\sinh^2 w + e^{-\beta u}}[\cosh w + \sqrt{\sinh^2 w + e^{-\beta u}}]}
$$

$$
\frac{N_p}{N} = \frac{1}{2} \left[1 + \frac{\sinh w}{\sqrt{\sinh^2 w + e^{-\beta u}}} \right],
$$

,

- An attractive coupling produces a negative internal energy of significant magnitude even for relatively small densities due to clustering.
- A repulsive interaction makes configurations with occupied nearestneighbor sites energetically unfavorable.
- If less then half the lattice sites are occupied, nearest-neighbor repulsion is readily avoided by strong repusive coupling.