Nearly Free Electrons .

This module builds on the results established in [tsc15]. The fermions are
now conduction electrons for the most part. The extent of their freedom
depends on the application under consideration.

Thermionic emission (Richardson effect):!

The conduction band of a metal is approximated by a potential well of semi-
infinite width and finite depth as shown.

When a cathode is heated up, it emits electrons at a rate R to be calcu-
lated. An emission current density J between cathode and anode with a
characteristic T-dependence is thus established.

W: depth of well. ¢ r _T—w—

er: Fermi energy. b %ﬁ ; W

¢: work function. b A | R

A: cathode surface area. b L o R

Electron escape conditions (genererously sufficient): p, > 0, 2pz >W.
m

For the emission rate we start from an expression derived in [tex62] in the
context of kinetic theory [tsc9]:

_1dN N [t e =
= R_Z%_V . d'Ux/_OO dvy/o dUzsz(V)-

Adaptations:

— Transform velocity to momentum: p, = muv,.

— Replace velocity distribution by fermion occupancy:

1

f(v) = 5 nohen = [exp (8% /2m — ) +1] "

1%
— Uniform density of states in p-space: D(p) = ‘(;L—S with g = 2.

dp. / dp,pi.
0

— Split momentum integral: / dp =27 /
V2mW

IThis section is adapted from Greiner et al. 1995.
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Resulting integral expression:
dr [ >0 i+t u -
R=— dp. p. d z 1
mh3 / P /0 pLpL {eXp (2kaT T )t

ArkgT [ p? 1
= dp,p.In (1 ——=
h3 /\/W by n( +6Xp( 2mhksT | kT

00 2
_ dmmhkpT / deln (1 + eW*G)/’fBT) ~ AT oyt
o h?

— The integral in the third line follows from the substitution e = p?/2m.

— In the last step, the second term of the logarithm is treated as a per-
turbation, which is a partial MB limit.

— FD statistics is still contained in the chemical potential, which is ap-
proximated as p ~ ep.

N N h3
Classically, we use instead [tex112]: z = e#/#sT = g_VA% = SV @k T

N [kgT
Classical emission rate: Ry = — ~“B7 o~W/ksT,
VvV 2mm

Experimental data for the emission current density, J = eR, agree with the
quantum result: a plot of In(J/T?) versus 1/T suggests a straight line.

In the absence of an anode-driven emission current, the emission rate R must
be in thermal equilibrium with the absorption rate R’. The electrons outside
the cathode, present at density N/V', can be treated classically.

N 2rmkgT
R = 7 (0.6(v.)) = 2kpT 7”’;—33 e~#/ksT — R
Ingredients:
— Classical ideal gas equation of state: N/V = p/kgT.
e kgT
— Maxwell distribution [tex56]: (v, 0(v,)) = 1/ —.
2mrm
. gksT ikt
— Grandcanonical pressure [tex94]: p = =—— e /"% with g = 2.

A7

— Shift of reference energy: ' = ep — W.



Schottky effect:?

Here we are interested in the dependence of the thermionic emission current
on the electric field between anode and cathode.

The applied electric field E = — E z lowers the work function. The electronic
potential energy outside the metal now has three terms:
ke?

A =W —eEz— —.
V(z)=W —eEz .

> W: Potential well depth (reference value).

> —eFz: Effect of uniform field electric field.
2
e
> L Correction due to positive charge induced on metal surface.?

z
The modified work function ¢’ is determined by the maximum of the effective
energy barrier as shown:

d

TAV(E) =0 = AV(z) =W - SPEE)? = ¢ =¢—¥?(kE)Y2
z

The characteristic dependence of the emission current density on the applied

electric field is known as the Schottky effect:

63/2\/k_E>

J = JO exXp ( kBT

The sketch makes it clear that the result is only valid for weak electric fields.
In stronger fields, tunneling (a quantum effect) becomes significant.
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2This section is adapted from Greiner et al. 1995.

3The structure of this term is inspired by the idea of a mirror charge.
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Photoelectric emission (Hallwachs effect):*

When a metal surface is illuminated by electromagnetic radiation, electrons
are emitted at a rate which depends on the frequency of the radiation.

The energy hw of a photon is transferred to a conduction electron in a po-
tential well of depth W.

Condition for photoemission: Aw > W.

o

#\ C\)’\L 7;? //' ‘ L V /
B 4 BRSO eI AN

_— nLo

= A0

Rate of photoemission (expression modified from thermionic emission):

R = M /Oo deln (1 + 6(:“‘_5)/]’“BT)'
h? W—hw

The threshold for emission is lowered from W to W — Aw.

— Work function: ¢ = hwg =W — >~ W — ep.

— Fugacity (with built-in energy shift): n = e, § = Sh(w — wp).
— Substitute integration variable: z = (e — W + hw).

— Integrate by parts.

— FD function: fy(n) from [tsl42].

4mm o 4mm < drx
° (kgT drln (1 ) = < (kT .
T (D) [ den (1) = TR () [T R
—_—
f2(n)
4mme
Photoemission current density: J = eR = W;Ln (kT)? fa(n).

Ultraviolet (UV) radiation:

> w > wp and A(w — wy) > kT

2

mee
independent of temperature).

> J=—"(w—wp)?

)
> 0>l > foln) = (i) = 25
2mh (

4This section is adapted from Greiner et al. 1995.
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Infrared (IR) radiation:

> w < wy and Alw — wo| > kT

> <l = fol) 2= =M,
4mrmee

B3
Threshold radiation:

> J=

(kpT)?e"@=9)/kET  (thermionic emission with shift in ¢).

2
>w=w = =1 :f2(1):%g(2):”—.

Tmee

J = —=—(ksT)*.
~ 3 (keT)
Pauli paramagnetism (PPM):

Langevin-Brillouin paramagetism (see [tsc12]) originates in the spin align-
ment of (unpaired) localized electrons with an external magnetic field.

Pauli paramagnetism originates in the spin alignment of (highly degenerate)
conduction electrons. These electrons are spin-paired with high probability.
Spin alignment requires most electrons to move to higher energy levels.

Conduction electrons have charge and spin degrees of freedom. Here we as-
sume that the (negative) electron charges are fully screened by the (positive)
charge of localized ions. Electrons can move freely.

It is useful to compare the electron gas with spin-polarized FD gases, specif-
ically their thermodynamic potentials.

> Spin-polarized FD gases: + (—) means all spins up (down).

Internal energies:
Ur = Uo(S+, Vi, Ni) = T Si — pa Vi + pa N
Helmholtz potentials and grand potentials via Legendre transform:
Ap = Ag(Ts, Vi, Ny) = Us = TiSe = —pi Vi + e Ny,

Qp = Qo(Th, Vi, pe) = Ax — pa Ny = —pi Vi
Each free energy has three control variables.

The thermodynamics of spin-polarized FD gases has been analyzed in
[tsc15] if we set g = 1. Spin is not a degree of freedom.



> FElectron gas
Internal energy:
US,V,M,N)=TS —pV + HM + uN.

Helmholtz potential, Gibbs potential, and grand potential via different
Legendre transforms:

AT, VM,N)=U —-TS = —pV + HM + uN,
G(T,VH, N)=A—HM = —pV + uN,
QT,V,H,u) =G — uN = —pV.
Each free energy has four control variables.

The electron spin is a degree of freedom. There is no coupling between
electrons. They only interact statistically via the exclusion principle.

PPM analyzed in canonical ensemble:’

System of N electrons with momenta p = ik and a (scaled) magnetic mo-
ments m, = j:%. In a box of volume V, the k are a discrete set.

Nonrelativistic one-particle energy in a uniform magnetic field H:

. H 2k
€ =€k F —, €= :
Kk k + 5 k 5m
Occupation numbers of single-electron states: nlf =0,1.

Energy of N-electron state:

By = 5 Y dnt = el + ) - (o 10|

o=+ k k

Canonical partition function of electron gas (formally):

/

In = Zexp (—szzek(n[f +ny) + 5TH(N+ - N—)) ;

{ni}
N " "
_ Z o(BH/2)(2N4—N) Z o Bexny Z e Bexme | (1)
Ni=0 {nlt {n,}
7, 2

5This section is adapted from Huang 1987. An alternative analysis, which treats the
electron gas as a system of statistically interacting particles, is carried out in the grand-
canonical ensemble and will be presented in a later module.
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— Number of electrons with spin up/down: Ny = Z nt.
k

/
— The sum Z is subject to the constraint N, + N_ = N.

"

— The sum Z is constrained to fixed V..

"

— The sum Z is constrained to fixed N_ = N — N,.

— The canonical partition functions ZR,i pertain to spin-polarized FD
particles and are related to identical Helmholtz free-energy functions:

7 = e PATVN)
; :

Gibbs free energy of electron gas, formally from (1):
G(T,V,H,N) = —kpTn Zy 2)
1

N
_ o ﬁ[HN —A (T,V,N )—A (T,V,N—N )}
— 2HN kpT In Nzoe +=Ao +)=Ao +
=

For N > 1 the sum in (2) is dominated by the largest term. All other terms
contribute logarithmic corrections to extensivity.

Dominant term in Gibbs free energy:
1
G(T7 V7H7 N) = §HN - HN+ + AO(T7 V7N+) + AO(T7‘/7N - N+>

1
= Ao(T, V. N.) + Ao(T, V. N-) = SH(N; = N-).

Natural independent variables of Helmholtz potential A(T,V, M, N):

— temperature: T,

— volume: V,

— magnetization: M = (N, — N_),
— number of electrons: N = N, + N_.

Helmholtz potential from Gibbs potential via Legendre transform:

A(T,V,M,N) = G(T,V,H,N) + HM
— Ao(T,V,N/2 + M) + Ay(T,V,N/2 — M).



The functions Ag(T,V, Ny) for spin-polarized fermions can be inferred by
Legendre transform from results derived in [tsc15] by setting g = 1:

kgTV V

Qo(T,V,kpTIn z3.) = — \D fojara(zs), Ni= )\_foD/Q(Zi)-
T T

= Ao(T, V, Ni) = Qo(T, ‘/, kT In Zi) 4+ NikpTln zy.

PPM thermodynamic potentials and functions:

By substitution we arrive at a parametric expression for the Helmholtz po-
tential A(T,V, M, N) of the electron gas in the form,

k
= igv Z [fD/Z(Za> Inz, — fD/2+1(Za>} )
v
N = ZN" = @ ZfD/2(ZJ)7

1 V
M = 5 XU:O'NJ = ng:afp/g(za),

A

where the two parameters z,, z_ control the two variables M and N.
The thermodynamic variables conjugate to N and M are derived from

N N
A:AO(T7V7N+)+AO(T7V:N7>7 N+:§+M, NJFIE—FM

— Chemical potential:

- 0"4 _ aAO 8N+ 8140 8N_ - 1 1
H= (aN)TVM - 8N+ ON + ON_ ON - (M+)(2>+(M—)(2)

1 1 1
= 5(,Uz+ + /J/7> = §I{ZBT1H(Z+Z,) = §I{ZBT20:1H 2o

— Magnetic field:

— aA _ aAO 8N+ (9A0 8N, o B
"= (8M)TVN B 8N+ oM + ON_ OM (ﬂJr)(l) + (M*)( 1)

=y — p_ = kBTan—+ = kBTZUlan.
Z_



Thermodynamic functions are first derivatives of thermodynamic potentials.
They come in conjugate pairs, of which one is a natural independent variable
of any given thermodynamic potential. Here we have four such pairs:

> T,S: temperature and entropy,

> H, M: magnetic field and magnetization,

> p,V: pressure and volume,

> p, N: chemical potential and number of particles.

We have already established parametric expression for H, M, y, N. The vol-
ume V always appears explicitly. The temperature T" appears explicitly and
is contained in the fugacities z,. That leaves pressure p and entropy S.

The grand potential is derived from the Helmholtz potential by a twofold
Legendre transform:

T, V,H,p) = A(T,V,M,N) — HM — uN = —pV.

Its parametric representation reads as follows:
k TV
Q=-— z pr/2+1 Zo
H = kBTZJInzg,

1
n = EkBT; In Zos

where the two parameters 2z, z_ control the two variables H and pu.

The pressure follows directly from 2 = —pV:
k: T
== Z b D/2+1 Za’

The entropy can be derived in two ways from what we already have [tex161]:

g (8A> B (89)
or V,M,N or V,H,p

:kBZN"KgH)%f;—x_WU}'

o=+

The internal energy is obtained via another Legendre transform [tex162]:

fD/2+1 Zo)

U=A+TS == kBTZN o)
D/2\~c

It is a thermodynamic potential if (parametrically) expressed as U (S, V, M, N).
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PPM response functions:

Pauli paramagnetism is characterized by thermal, magnetic, and mechanical

response functions including the following:

ou
— Heat capacity [tex163]: Cyyr = (—) :
') yyn

— Heat capacity [tex164]: Cyy = (8_U> .
I )y un

oM
— Isothermal susceptibility [tex165]: xrv = (—) .
OH ) 1y
o oM
— Isothermal susceptibility [tex165]: x1, = | == .
OH ) 1o

— Isothermal compressibility [tx166]: kry = —

PPM magnetization curves (numerical analysis):

Graphical representations of M versus H at fixed (and discretely varied) T
reveal signature attributes of magnetic models or materials.

We choose convenient scales, in part introduced earlier for FD gases [tsc15]:

A . h?

V
D _ 7 — = —
[> )\Tv — N :> kBTU (V/N)Q/D, A Qﬂ'm’

> ep = kpTy = kT, [T(D/2 + 1)]*'7.

Scaled variables in use for magnetization curves (two alternatives):

H _ . T - H . T
= H = 7=

N = = T=_ A
’ kpT,’ T,’ kpTy’ Ty

=2|=

Next we construct from the two-parameter representations of thermodynamic
functions a one-parameter representations for M (T, H) or M (T, H).
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N [(kgT\"¢ - o -
\2 2 ( B ) _ 7-D/2 _ foe (ZeH/QT) + foys (zefH/ZT)_
with z in the role of the parameter. Alternatively, for M (T, H ) we have

l fD/2 (Zeﬁ/ﬁ) - fD/2 (Zefg/QTA)
2 foya(2€M/2T) + fpja(ze=1/2T)

TP = (/2 + 1) [ fopa (227) + fopp(ze717T)]. @

M =

(3)

The numerical analysis of Egs. (3) and (4) as carried out in [tex180] produces
the magnetization curves represented by the solid curves.
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— At high T, the curves are similar to those of Langevin-Brillouin para-
magnetism with similar saturation effects.

— At low T,Athe slope remains finite and saturation occurs at H=1in
the limit 7" — 0 unlike in Langevin-Brillouin paramagnetism.
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PPM magnetization curves at 7' = 0 (exact analysis):

An explicit expression for the inverse of M(0, H) can be extracted from (3)
and (4) via asymptotic expansion [tex181]:

This relation can be inverted analytically for D =1,2,4,6,8 at least:

_ A _ A 1 -~ _ . 1 .~ / A
Ml(ovH):M2(07H):§H7 M4<07H):§H 2_H2>

. d .
Initial slope (7' = 0 susceptibility): lim — M (0, H) = D 2%P~3,
A-o0dH
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PPM magnetization curves in D = 2 (exact analysis):

The simplicity of f(z) = In(14z) makes it possible to process the parametric
result (3)-(4) into the explicit result for D = 2 [tex182]:

_ . H . inh(H /2T
M(T,H) = - — TArtanh sinh(H/2T)

sinh?(H /2T 4 eV/T

The low-temperature limit of this expression is subtle. The second term
disappears if H < 1, leaving the strictly linear first term, M =H /2. If
H > 1, the second term becomes (1 — H)/2, producing a constant, saturated
magnetization, M = 1/2 [tex182)].
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PPM isothermal susceptibility at H=0:

A A~

We have noted that the initial slope of the magnetization M (T, H) varies
with D and T in non-systematic ways.

The zero-field isothermal susceptibility, investigated in [tex183], illuminates
the non-systematic T-dependence:

.. (OM 1 NC. L
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PPM correction to Langevin-Brillouin result at high temperature:

The high-T" expansion of the magnetization curve yields the following expres-
sion [tex184]:

_ 1 H 1. - H
M = —tanh | —= ) [1 = =(2T)"P%sech® [ —= | +...|.
5 tan (2T) { 2( )~/ sec 5T +
The leading term represents the equation of state of an ideal Langevin-

Brillouin two-level paramagnet [tex85].

The leading correction has a negative sign. Double occupancy, which is rare
at high T, is only open to electrons with opposite spin direction.
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