
Ideal Quantum Gases I: Fermions [tsc15]

This module is structured in a way that highlights the mathematicl simi-
larities and physical differences between ideal Fermi-Dirac (FD) and Bose-
Einstein (BE) gases and their common Maxwell-Boltzmann limit.

Equation of state:

The thermodynamic equation of state of an ideal gas is a relation between
pressure, volume per particle (or mole), and temperature.

For the classical ideal gas it reads1 pV = NkBT .

For the ideal fermions gas we use (from [tsc13]) two sums over 1-particle
states,

pV = −Ω = kBT
∞∑
k=1

ln
(
1 + ze−βεk

)
, N =

∞∑
k=1

1

z−1eβεk + 1
,

and the density 1-particle states, D(ε) =
gV

Γ(D/2)

(
2πm

h2

)D/2
εD/2−1.

The factor g is included to account for any level degeneracy due to spin.

This allows us to convert the sums into integrals [tex113]:

pV

kBT
=

∫ ∞
0

dεD(ε) ln
(
1 + ze−βε

)
=
gV

λDT
fD/2+1(z),

N =

∫ ∞
0

dε
D(ε)

z−1eβε + 1
=
gV

λDT
fD/2(z),

where we have introduced the polylogarithmic Fermi-Dirac functions,

fn(z) = −Lin(−z)
.
=

1

Γ(n)

∫ ∞
0

dx xn−1

z−1ex + 1
, z ≥ 0,

whose properties are elucidated in [tsl42].

Note that for fermions he range of fugacity has no upper limit: 0 ≤ z ≤ ∞.
The chemical potential µ is unrestricted.

Parametric representation of the thermodynamic equation of state:

pV

NkBT
=
fD/2+1(z)

fD/2(z)
, 0 ≤ z ≤ 1.

1In the grandcanonical ensemble, N is the average number of particles in an open system,
controlled by the chemical potential µ or the fugacity z = eβµ.
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Low fugacity, z � 1, means high temperature and/or low density. Here the
fermion equation of state deviates little from that of the MB gas.

At lower temperature and/or higher density, the pressure of fermions exceeds
that of classical particles. The deviations are stronger in low dimensions.

The horizontal line indicates that the fermion gas in D = ∞ dimensions
behaves like a classical ideal gas.
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Additional insight into the equation of state is gained by a look at isochores,
isotherms, and isobars.

Here we again switch to the canonical ensemble. We keep the number of
particles fixed (N = const) and treat the fugacity (now a dependent thermo-
dynamic variable) as a convenient parameter.

Chemical potential:

The chemical potential is a more prominent thermodynamic variable in the
analysis of fermions than it is for bosons, particularly at low temperature.

Fermi energy/temperature: lim
T→0

µ = εF = kBTF .

Fugacity z from
λDT
v

= fD/2(z), v
.
=
gV

N
, λT =

√
h2

2πmkBT
.

Scaled temperature (from [tsc14]):
T

Tv
= [fD/2(z)]−2/D.
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Reference temperature (from [tsc14]): kBTv =
Λ

v2/D
, Λ

.
=

h2

2πm
.

Chemical potential:
µ

kBTv
=

T

Tv
ln z.

The Fermi temperature TF is a more commonly used reference temperature
than Tv is for fermions. The ratio is worked out in [tex117]:

TF
Tv

= [Γ(D/2 + 1)]2/D
D�1
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The general trend is that the chemical potential decreases with increasing
temperature. Only in D = 1 does it increase initially, as shown in [tex118].

Level occupancies:

FD statistics limits one-particle states to single occupancy. The average
occupancy of the level at energy ε as derived in [tsc13] is

〈nε〉 =
1

eβ(ε−µ) + 1
.

In an open system, the chemical potential µ controls the average number N
of particles in the system. It is then custom to plot 〈nε〉 versus (ε − µ)/εF ,
using Fermi energy εF for scale (see first panel).

In this representation, the curves do not depend on the dimensionality D of
the space. The dependence on D of the average particle number N is hidden
in the density of energy levels D(ε).
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In a closed system, the chemical potential is controlled by the (fixed) number
N of particles and becomes a function µ(T ), which also depends on D.

In consequence, the level occupancies, plotted as 〈nε〉 versus ε/εF , yield curves
that depend on T and D (see remaining panels).

In both representations, the distribution of occupancies becomes a step func-
tion with the step at the Fermi energy ε = εF .
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Isochores:

Universal isochore inferred from expressions for pV/kBT and N [tex119]:

p

pF
=

T

TF

fD/2+1(z)

fD/2(z)
,

T

TF
=

[
Γ

(
D
2

+ 1

)
fD/2(z)

]−2/D
.

Statistical interaction pressure (low-T limit) [tex119]:

lim
T→0

p

pF
=

(
D
2

+ 1

)−1
.

High-temperature asymptotic regime [tex119]:

pV

NkBTF
∼ T

TF

[
1 +

[
2D/2+1Γ

(
D
2

+ 1

)]−1(
TF
T

)D/2]
.

FD isochores are above the MB line, whereas BE isochores were below it.
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Recall the distinction between kinematic pressure and interaction pressure
from [tsc9]. In the MB gas there is only kinematic pressure. In the FD gas
(BE gas) there is also positive (negative) statistical interaction pressure.
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With D increasing, the FD isochores approach the MB line gradually and
reach it in the limit D →∞. There is a subtlety to that limit, which comes
into view when we switch the scales from pF , TF to pv, Tv:

p

pv
=

fD/2+1(z)

[fD/2(z)]1+2/D ,
T

Tv
=
[
fD/2(z)

]−2/D
.
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The FD isochores now approach a limiting line consisting of two straight
segments, one horizontal and the other part of the MB isochore.

Phase transition:

Mapping out the limiting FD isochore requires that we take two non-commuting
limits: z →∞ and D →∞.
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B z <∞, D →∞:

p

pv
=

T

Tv

fD/2+1(z)

fD/2(z)

D→∞−→ T

Tv
(ideal MB gas).

B D →∞, z →∞ with D/2 = r ln z, r ≥ 0:

p

pv
=

fD/2+1(z)

[fD/2(z)]1+2/D
D�1
 

e−1

1 + 2/D
D→∞−→ 1

e
' 0.367 . . . ,

T

Tv
=
[
fD/2(z)

]−2/D D�1
 

D
2

e−1

ln z
=
r

e
(pure Fermi sea).

Along the limiting FD isochore, the gas remains fully degenerate for 0 ≤ T <
Tv and then explodes into an MB gas.

For large D, nearly all occupied energy levels of the degenerate macrostates
are at the Fermi surface. Here the density of states is very steep.

As T reaches Tv from below, almost all fermions spill into a super-abundance
of empty states nearby.

Isotherms:

Universal isotherm inferred from expressions for pV/kBT and N [tex120]:

p

pT
= fD/2+1(z),

v

vT
= [fD/2(z)]−1.
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Isotherm at low density approaches Boyle’s law [tex120]:

pv = const, v � vT .

Isotherm at high density approaches adiabate [tex120]:

pv(D+2)/D = const, v � vT .

Entropy:

For the derivation of the entropy we recall the expression for the grand po-
tential stated at the beginning of this module and its relation to the entropy:

Ω = −gV kBT
λDT

fD/2+1(z), S = −
(
∂Ω

∂T

)
V,µ

.

The result in parametric form for N particles confined to a rigid box reads:

S

NkB
=

(
D
2

+ 1

)
fD/2+1(z)

fD/2(z)
− ln z,

T

TF
=

[
Γ

(
D
2

+ 1

)
fD/2(z)

]−2/D
.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T/TF

S
/N
k B

entropy

D = 1, 2, 3, 51

2

3

5

– At high temperature, all curve rise logarithmically – an attribute shared
with the MB gas.

– In the low-temperature limit all curves approach zero linearly – an
attribute not shared with the MB gas.
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Internal energy:

Given the explicit expressions for Ω, S, N derived earlier, we can calculate
the internal energy from the relation,

U = Ω + TS + µN.

The result in parametric form for N particles confined to a rigid box reads:

U

NkBTF
=
D
2

fD/2+1(z)

fD/2(z)

T

TF
,

T

TF
=

[
Γ

(
D
2

+ 1

)
fD/2(z)

]−2/D
.
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– At high temperature, all curve rise linearly – an attribute shared with
the MB gas.

– In the low-temperature limit all curves approach a nonzero value – an
attribute not shared with the MB gas.

– The scaled ground-state energy is [tex102]

lim
T→0

U

NkBTF
=
U0

εF
=
D
D + 2

.

– An alternative and frequently used rendition of the ground-state energy
is the following [tex102]:

U0

gV
∝ ε

D/2+1
F ,

N
gV
∝ ε

D/2
F ⇒ U0

gV
∝
(
N
gV

)(D+2)/D

.
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Heat capacity:

Given the explicit expressions for U and S derived earlier, we can calculate
the heat capacity from either result as follows:

Cv =

(
∂U

∂T

)
V,N

= T

(
∂S

∂T

)
V,N

.

The derivatives carried out for T ≥ Tc yield the expression [tex100],

CV
NkB

=

(
D
2

+
D2

4

)
fD/2+1(z)

fD/2(z)
− D

2

4

fD/2(z)

fD/2−1(z)
.

High-temperature asymptotics [tex100]:

CV
NkB

∼ D
2

[
1− D/2− 1

2D/2−1Γ(D/2)

(
TF
T

)D/2]
.

Low-temperature asymptotics [tex101]:
CV
NkB

∼ D π2

6

T

TF
.
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– All BE curves approach the MB result (dashed lines) in the high-T
limit. The switch of side is reflected in the high-T asymptotics.

– All BE curves are approach zero in the low-T limit as required by the
third law of thermodynamics. The approach is linear as reflected in
the low-T asymptotics.
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Exercises:

B Chemical potential I [tex117]

B Chemical potential II [tex118]

B Statistical interaction pressure [tex119]

B Isotherm and adiabate [tex120]

B Ground-state energy [tex102]

B Heat capacity at high temperature [tex100]

B Heat capacity at low temperature [tex101]

B Stable white dwarf star [tex121]

B Unstable white dwarf star [tex122]
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