Ideal Quantum (Gases I: Bosons ..

In the previous module [tsc13] we have set the stage for the thermodynamic
analysis of a gas massive bosons. We assume the particles have nonrelativistic
energies and no spin.

Equation of state:

The thermodynamic equation of state of an ideal gas is a relation between
pressure, volume per particle (or mole), and temperature.

For the classical ideal gas it reads! pV = NkgT.
For the ideal boson gas we use (from [tsc13]) two sums over 1-particle states,
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and the density 1-particle states, D(e) = T2 \ 12 € :

This allows us to convert the sums into integrals [tex113]:2
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where we have introduced the polylogarithmic Bose-Einstein functions,

i o1 © dy !
gn(z) = Lin(2) = () /0 po 0<z<1,

whose properties are elucidated in [ts136].

Note the limited range of fugacity, 0 < z < 1. The limit 2 — 1 from below
signals criticality and the onset of condensation. At z = 1, the lowest energy
level (at € = 0) may be populated by a macroscopic number of particles.

Parametric representation of the thermodynamic equation of state:

pV gpj2+1(2)
= , 0<2<1.
N/{ZBT gp/2<2)

'In the grandcanonical ensemble, A is the average number of particles in an open system,
controlled by the chemical potential p or the fugacity z = e’#.

2The expression for A requires a more subtle interpretation for z = 1 (see later).
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Low fugacity, z < 1, means high temperature and/or low density. Here the
boson equation of state deviates little from that of the classical ideal gas.

At lower temperature and/or higher density, the pressure of bosons is lower
than that of classical particles. The deviations are stronger in low dimensions.

The horizontal line indicates that the boson gas in D = oo dimensions be-
haves like a classical ideal gas. It does so only if z < 1.
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Additional insight into the equation of state is gained by a look at isochores,
isotherms, and isobars. For that purpose we introduce scaled variables.

Here we switch to the canonical ensemble. We keep the number of particles
fixed (N = const) and treat the fugacity (now a dependent thermodynamic
variable) as a convenient parameter.

Reference values:

The reference values for T', v = V/N, and p introduced here are based on

the thermal wavelength: Ay = h N A P
— rm velength: S N _
© thetihal waveleng "=\ 2emkpT pT 2mm’

— the MB equation of state: pv = kgT.

We construct p,, T, for isochores, vy, pr for isotherms, and 7, v, for isobars
from the two ingredients as follows:



> pov=kgl,, v= (k‘BTv) (v = const.)

> prup =kgT, vp= (ij—T) (T = const.)

> pv, = kg1, v,= (k‘BT ) (p = const.)
P

The results are listed in the following:

A A

k?BTv = m DPv = m (U = COIlSt.)
A\ D2 Jon T D/2H

v = (kB_T) pr=A (%) (T' = const.)

2/(D+2) AN PP
kgT, = A (%) vy = (5> (p = const.)

The use of scaled variables with these reference values allows us to construct
universal curves for isochores, isotherms, and isobars:

> p/p, versus T/T, at v = const.
> p/pr versus v/vr at T = const.
> wv/v, versus T/T, at p = const.

The shape of these curves is independent of the number of particles and of
the value of the variable kept constant.

Isochores:

Universal isochore inferred from expressions for pV/kgT and N [tex114]:
P gp/241(2) T D
b v 7 = L9op(?)] L 0<z< 1.
Pv lgppa(2)] v

This parametric expression holds for T" > T,..

Critical temperature is approached from above as z — 1:

T 0 :D=1,2
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v 1 : D=



At T < T,, the fugacity is locked into the value z = 1 [tex114].

» 7\ /2
Isochore at T' < T,: o (T) ¢(D/2+1).

This expression also holds asymptotically for T' < T, in D < 2.
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— The isochore of the MB gas is a straight line with unit slope and no
intercept (dashed line).

— The boson isochores approach zero faster, ~ TP/2+1 in the low-T limit.
— The critical temperature 7. is nonzero only for D > 2.

- At T < T, the isochore is a pure power law. Bosons in the Bose-
Einstein condensate (BEC) do not contribute to the pressure.?

— In the limit D — o0, the isochore becomes discontinuous. Bosons
behave classically at T > T, and are all condensed at T' < T..

— The high-temperature asymptotics of the boson isochore is [tex114]

1 T, D/2
1= 9D/2+1 <T>

At high T, lower D means lower pressure. At low T the trend is oppo-
site.

P T

—_—~N —

N

3This is only true in the framework of ideal gases. Real condensates have an extension
albeit tiny compared to the gas.



Coexistence of gas and condensate:

It is convenient to introduce phase coexistence in the context of isochores,
where it is realized at T' < T,. The original (grandcanonical) expression for
N must be adapted to the case N = const as follows:

v

N Ngas = @9@/2(2) : T > Tca

- \%

Ngas + NBEC - )\_DC(D/2) + NBEC . T S Tc-
T

— The two expressions are consistent at 7' = T.: Ngog = N, Npgc = 0.
— The first expression determines z for given N = Ng,s, V', and T'.

— The second expression determines Ng,s and Npgc for given N, z = 1,
and T' < T,.

— For the regime of coexistence, we can write.

Ngas —1_ NBEC _ [V/)‘?]C(D/Q) — <T)D/2 T < TC‘

N N [V/AZI(D/2)

T, ST

— If T, > 0, Ny, vanishes in a power-law cusp as 1" — 0.

— If T, = 0, Ng,s stays constant for any 7" > 0.

Isotherms:

Universal isotherm inferred from expressions for pV/kgT and N [tex115]:
p v -
o goppni(2), - =lopn(2)] g

This parametric expression holds for v > v..

Critical volume is approached from above as z — 1:

v 0 - D=1,2
—= = [C(D/2)]_1 = 0383 : D=3
vr 1 . D=o0
Constant pressure p. at v < v,:
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— The isotherm of the MB gas (shown dashed) reflects Boyle’s law.

— If v. = 0, realized in D < 2, the isochores are strictly monotonically
decreasing, but the pressure is significantly lower than in the BE gas.

— If v. > 0, realized in D > 2, the pressure levels off to a constant at
v < v.. Only the particles in the gas phase contribute.

— In the limit D — oo, the particles in the gas phase uphold Boyle’s law.
— The large volume asymptotics of the boson isotherm is [tex115]

Lot (1)
pr v v/l

The deviations are strongest in low D. By contrast, for small v the
deviations from Boyle’s law are largest in high D.

Isobars:

Universal isobar inferred from expressions for pV/kgT and N [tex115]:

D/(D+2)
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Up 9p/2(2) 1 2

This parametric expression holds for T" > T...

Critical temperature is approached from above as z — 1:
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Critical volume:
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— The MB isobar (shown dashed) is linear with no intercept.

— Boson isobars in any D reach v = 0 at a nonzero 7. Bosons can only
support a gas phase at given pressure if the temperature exceeds the
threshold value T..

— The critical volume v, vanishes in D < 2. The isobars bend down to

v = 0 continuously.

—In 2 < D < o0, the isobars bend down to a nonzero v, and then drop
to v = 0 in a discontinuity.

— In the limits D — oo the boson gas behaves classically at 17" > T, and
collapses with no warning.

— The high-temperature asymptotics of the boson isobar is [tex115]

D/2+1
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As already observed in isochores and isotherms, the deviations of the
boson asymptotics from the MB results are highest in low D and vanish
as D — oo.
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Phase diagrams:

The thermodynamic equation of state of the ideal BE gas describes a surface
in pvT-space. For the MB gas that surface is described by pv = kgT.

The onset of condensation in the BE gas is described by a transition line on
that surface.

> D = 1: The transition is at v = 0 and forms an edge of the surface. It
is a particular isochore. The same is the case in D = 2 (not shown).

> D = 3: The transition line runs through the surface and causes a sharp
edge in it. The same is the case in 3 < D < oo (not shown).

> D = oo: The transition line is at k7. = h? /2mm. It is an isotherm
and causes a discontinuity in the sureface.




Entropy:

For the derivation of the entropy we recall the expression for the grand po-
tential stated at the beginning of this module and its relation to the entropy:

VEkgT o0}
Q=- S=—|= .
B9oaa (o). (57),
The result is worked out in [tex179] for N particles confined to a rigid box:
(2 + 1> —gD/QH(Z) —In 2, T>T,,
S . 2 gp/2<2) y
Nkg | (D T\
i Z41)c@2+1) (=) , T<T.
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— The values of T./T, in D > 2 were derived for the isochores.

— The expression for T' < T,, which is exact in D > 2, is also accurate in
D < 2 asymptotically for T < T,,.

— At high temperature, all curve rise logarithmically — an attribute shared
with the MB gas.

— In the low-temperature limit all curves approach zero — an attribute
not shared with the MB gas.

— At T, the curve for D = 5 has a discontinuity on slope, which the curve
for D = 3 does not have.



Internal energy:

Given the explicit expressions for €2, S, N derived earlier, we can calculate
the internal energy from the relation,

U=Q+TS+ uN.
The result is worked out in [tex179] for N particles confined to a rigid box:
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— The values of T./T, in D > 2 were derived for the isochores.

— The expression for T' < T,, which is exact in D > 2, is also accurate in
D < 2 asymptotically for T < T,,.

— At high temperature, all curve rise linearly — an attribute shared with
the MB gas.

— In the low-temperature limit all curves approach zero faster than lin-
early — an attribute not shared with the MB gas, which exhibits a linear
approach.

— At T, the curve for D = 5 has a discontinuity on slope, which the curve
for D = 3 does not have.
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Heat capacity:

Given the explicit expressions for U and S derived earlier, we can calculate
the heat capacity from either result as follows:

oU 05
o= (a—T>V,N—T<ﬁ)V,N‘

The derivatives carried out for T' > T, yield the expression [tex97],
¢&v (D D\ gpj+1(2)  D? gppa(2)
Nkg 2 4

9p/2(2) 4 gpja-1(z)
The result for T' < T, represents a pure power-law [tex116]:
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— All BE curves are approach zero in the low-7" limit as required by the
third law of thermodynamics. The MB result violates that law.

— All BE curves approach the MB result in the high-T" limit, but from
different sides. The switch is reflected in the high-T" asymptotics,

Cv. DI  D2-1(T, b/
Nkg 2 2D/241 \ T
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— The expression for T' < T, is exact to leading order in D = 1 asymp-
totically for 7' < T}, but misses logarithmic corrections in D = 2.

— The heat capacity is smooth for D < 2, remains continuous for D < 4,
and becomes discontinuous for D > 4.

Exercises:

Fundamental relations [tex113]

Isochores [tex114]

Isotherms and isobars [tex115]

Entropy and internal energy [tex179]
Heat capacity at high temperature [tex97]

Isothermal compressibility [tex128]
Isobaric expnasivity [tex129]
Speed of sound [tex130]
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> Heat capacity at low temperature [tex116]
>

>
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> Ultrarelativistic Bose-Einstein gas [tex98]
>

Statistical mechanics of blackbody radiation [tex105]
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