Grandcanonical Ensemble ...

In an open thermodynamic system, not only the energy content fluctuates,
but also the number of particles. This complicates the search for the equi-
librium condition, but the benefit is immense as we shall see.

Consider a classical system with an average internal energy U and an average
number N of particles in a region of volume V.

A set of phase spaces I'y, N = 0,1,2,... with probability densities py(X)
and interaction Hamiltonians Hx(X) is required for the specification.

Extremum principle:

Determine the py(X) that maximize the Gibbs entropy subject to three
auxiliary conditions: normalization and averages of energy and number of
particles:

— Gibbs entropy:! S = —kp Z / d*N X pn(X) In[Crpn(X)],
—Jr
— normalization: Z / dN X pn(X) =1,
— internal energy: Z/ dN X py(X)Hy(X) = U,
'y

— number of particles: (N) = Z/ AN X py(X)N = N.
'y

N=0

Application of calculus of variation with Lagrange multipliers ag, ay, an:

) [Z / AN X {—kppn In[Cnpn] + copn + avHypy + @NNPN}] =0
I'n

= Z/ dGNXépN {—k;Bln[C’NpN] —kB+CY0+OéUHN+aNN} =0
I

These integrals must vanish for arbitrary variations dpy. In consequence,
the contents of each {--- } must vanish.

1 Qg
X — =1 —H X —N
= pn(X) = Cn exp (kB + i N(X) + i )

! Adding a (constant) term for N = 0 in each sum is a mere convenience and makes no dif-
ference. The values Cy = h*N (Cx = 3N N!) are for distinguishable (indistinguishable)
particles as explained in [tsc10].



We determine the three Lagrange multipliers by substitution of py(X) into
the auxiliary conditions. We begin with the normalization and name the
resulting integral expression:

_ 6N an -
eXp(l kB) ZCN/F d Xexp(kBHN(X) kBN) Z.

We implement the other two conditions with {---} from above as follows:
Z / AN X pre(X){ ks In[Cy pov (X)] = (ks — a0) -+ Hy (X) +a N} = 0.
I'n

The four terms of this sum of integrals are readily related to the entropy
S, the quantity named Z, internal energy U, and the average number A of
particles, respectively:

= S—krgan—l—ozUU—i-ozN./\f:O.

With ay = —1/T and ay = u/T), this is a familiar thermodynamic relation:
1 an ]CB
= U+ —S+—N=—"InZ & U-TS—uN=Q.
ay ay ay

Grand potential: Q(T,V,u) = —kgT'InZ = —pV.
Grandcanonical partition function:

7 — i AN X ¢ BHN(X)=uN)

1
ZCn

Equilibrium probability densities: px(X) = e AHNX)=uN),

Thermodynamic functions from grand potential:

_ t -S__ a_Q
entropy: oS = a7

— pressure: p = (89)
U \av

of
— average number of particles: N' = — (8_>
1L



Fugacity: z = e*/*sT  (often used as independent variable instead of ).
The grand partition function is rendered as Z(3,V, ) or Z(3,V, z).

Relation between canonical and grandcanonical partition functions:

7 = Z etN/ksT 77 Z AN
N=0 N=0

Open system of indistinguishable noninteracting particles:
00 1 ~ B
- N _ ~ NN _ 27
In =2 Z—ZN!Z 7N = e
N=0

= O=—kgTlhZ=—kgT2Z.

Density fluctuations and compressibility:

Average number of particles (in some volume V):

1 8Z 10
dGNXN —BHN(X)—puN) _ ——1InZ.
=3 e ). 7308~ 5o

o) 0 10
Alternatively: N = — <—) fInZz ——1InZ.
Y o ) 1y 8u( )= B op

Fluctuations in particle number (in volume V'):
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Use the Gibbs-Duhem relation, Vidp — Ndyu — SdT = 0.
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Use (a(va//\/)>v - (a(gj/\//\/))vl a?\/ - AV[Q;\/
U (g7, = (ag/vm); a7 =N

1 [oV
[sothermal compressibility: ky = —— (—) :
4 TN

o |72 N?
= (W)TV = m I<LT1 = <N2> — <N>2 = VI{ZBTFJT.

An alternative expression for (N?)—(N)? is calculated in [tex95]. The density
fluctuations for a classical ideal gas are calculated in [tex96].

At the critical point of a liquid-gas transition, the isotherm has an inflection
point with zero slope, dp/0V = 0, implying k7 — oo. The strongly enhanced
density fluctuations are responsible for critical opalescence.

Gentle introduction to quantum statistics:

Quantum mechanics demands that the many-body eigenvectors have a defi-
nite symmetry under permutation of identical particles. This requirement is
often easiest to implement in the grandcanonical ensemble.

Consider an ideal quantum gas. Bosons have spin s = 0,1,2,... and sym-

metric eigenvectors. Fermions have spin s = %, %, g, ... and antisymmetric
eigenvectors. It is safe to ignore the spin for what follows immediately.

N
Hamiltonian: lfIN = Z ﬁg.
=1

1-particle eigenvalue equation: hy|k,) = e/|ky).
N-particle eigenvalue equation: f[N\kl, ., kn) = Enlky, ... k).
= 2K

Total energy: Ey = Z €, €=
=1

2m
N-particle product eigenstates: |ki,...,ky) = |ki)... ky).
Each particle is identified by its wave vector k;.
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Permutation symmetry:

Exchanging the wave numbers of otherwise identical particles does not pro-
duce a distinct quantum state. This is important in sums over states.

Product wave functions are readily symmetrized or antisymmetrized by tak-
ing specific linear combinations.?

> Bosons: symmetrized states |ky, ..., ky)®.

. ) — L
N =2: |ki, ko)™ = \/§(|k1>|k2> + ko) k1))

> Fermions: antisymmetrized states ki, ..., ky)®.
1

N = 2I |k1,k2>(A) = \/5

(k1) [ks) — [ko)[ky)).

Occupation number representation:

> Bosons: |ky,...,ky)®) =|ng,ne,...), npy=0,1,2,...
> Fermions: [ki,...,ky)™ =|ny,ng,...), np=0,1.
Antisymmetric wave functions vanish identically if two particles have iden-

tical wave numbers. Hence the single-occupancy restriction for fermionic
1-particle states.

Here k, represents the wave vector of /** particle, whereas n;, refers to the
number of particles in the & 1-particle state.

The label k of a 1-particle state corresponds (in the current context) to the
wave number k of a particle if it occupies that state. The energy ¢, of a
1-particle state is the energy ¢, of particle ¢ if it occupies that state.

— Energy: I:I|n1,n2, ...y=EFE|ni,ng,...), E= anek.
k=1
— Number of particles: N|n1,n2, ...y =N|ny,ng,...), N= an
k=1

In the microcanonical ensemble, ' and N are fixed. In the canonical ensem-
ble, (E) is controlled by the temperature T'. In the grandcanonical ensemble,
(N) is controlled by the chemical potential f.

2The (readily available) expressions for general N are of no concern here.
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Canonical partition function:

!/

Zn = Za(nl,ng, ...)exp < anek> :

{ni}

/ o0
The sum Z is subject to the constraint Z ng = N.
{nr} k=1

The statistical-weight o(ny, nse,...) depends on the symmetry requirement:

> Bose-Einstein statistics: ogg(ni, no,...) =1 for ny, =0,1,2,...

e .. 1 if =0,1
> Fermi-Dirac statistics: opp(ni,ng,...) = { 0 z)tﬁgrwisé ’

What is the statistical weight factor for the Maxwell-Boltzmann gas?

We recall the partition function for the classical ideal gas from [tscll] and
adapt it to fit the notation used here:

N
[ O E =
k=1

Next we use a multinomial generalization of the binomial expansion for the
contents of parenthesis:

(a+ b)Y i "bN’".

In = N! Z nllng 661)n1 (e—ﬁez)n2

Then we make contact Wlth the general expression above, which determines
the statistical weight:

> Maxwell-Boltzmann statistics: oy p(ny,ng,...) = ———.
nl!ngl e

All three statistical weights are the same if multiple occupancy of 1-particle
states is very unlikely. This is the case in dilute gases at high temperatures.
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Grandcanonical partition function:

The constrained sum in the canonical partition function, which makes its
evaluation difficult, is turned into an unconstrained sum when we switch to
the grandcanonical ensemble.

= Z:izNZN:ZU(m,nQ,.. exp( anﬁk— >7

N=0 {nw}

where we have used 2V = eV = exp (5# Z nk) .

k=1

In all three cases, FD, BE, and MB, the exponential function can be factor-
ized. Sums over ny can then be evaluated independently.

> FD statistics: each sum has just terms:

Zpp = Z Z <+ eXp <—ﬁznk(€k - M)) = H Z ze PRk,

n1=0 ngy=0 k=1 nk=0

oo

= Zrp = H (14 ze 7).
k=1

> BE statistics: each sum is a geometric series:

ZBE:Z Z"'GXI)(—BZH;C(QC—N)):HZ ﬁﬁk

n1=0 no=0

= 1
= Zpp = ’!—[ T 2o
=1

> MB statistics: each sum is the series expansion of an exponential fct.:

ZvB = Z Z n1,n2 exp <_ank(6k - M)) .

n1=0 no=0
= ZMB—H E ze BE’“ Hexp ze BE’“
nlc
k=1 ni=0

The grandcanonical partition function for each statistics is a product of terms
pertaining to 1-particle states.



Grand potential:

T, V,p) = —kgTInZ =U — TS — uN = —pV.

The natural independent variables are as stated. Sometimes the fugacity z is
substituted for the chemical potential ;1. Care must be exercised with partial
derivatives.

> Qpp = —/fBTZln (1 + ze’ﬁe’“) = —k;BTZhl (1 + e*ﬁ(&r#)) :
k=1 k=1

> Qpp = kBTZln (1 — ze’ﬁe’c) = kBTZln (1 _ 6*5(61@*#)) ,

k=1 k=1

> QMB = —kBTZZe*,BGk — _kBTzefﬁ(ekf,u).

k=1 k=1

The dependence of 2 on T" and u is explicit. Its dependence on V' is concealed
in the 1-particle energies ¢, and made explicit later.

Average number of particles and state occupancies:

( o

1
Z::—zleﬁekﬂ . FD,
o0 > = 1
Zze’ﬁe’c . MB.
\ k=1

Entropy and state occupancies: [tex178§]

( [ee]

—kp Z [(ni) In{ny) + (1 — (ng)) In(1 = (ny,))] : (FD)

k=1

S=-— (—) =< — kBZ [(ni) In(ny) — (1+ (ng)) In(1 + (ni))] = (BE)

o0

— kg Y [(ni) In(ng) — (ny)] . (MB)

\ k=1




Internal energy and state occupancies: [tex178§]

o0

k=1

Fluctuations of state occupancies: [tex110]
_ ,0*InZ _,0(n
() =~ n2) — ()2 = 22 g1 D)

86% n 8ek .

Density of states:

Thus far we derived all expressions for thermodynamic quantities of quantum
gases as sums over l-particle states. For their further evaluation, we must
know the distribution of 1-particle energies €.

Particles (fermions or bosons) of rest mass m have relativistic energy-momen-
tum relation,
2

p 2

— ek me
e(p) = \/m2ch + p2c2 — mc*  ~ 2m ’

pc o€ mc?,

with the nonrelativistic and ultrarelativistic limits indicated.

Consider a hypercubic box of volume V = LP, small enough that the density
of particles in real space can be assumed uniform.? The density of 1-particle
states is uniform in k-space: (L/2m)".

Invoking isotropy we can write for the density of energy levels:

L\" , 1% o 27P/2
D(e)de = (%) dPk = (QW)D.AD]{? dk, Ap = D7)

Using €(p) with p = ik we obtain the result [tex111],

D(e) = % P21 (6 + 2mc2)D/2_1 (6 + mC2).

In the nonrelativistic and ultrarelativistic limits this relation turns into,
V 2rm\ 7/? D
/2—1 . 2
F(D/2)<h2> € e me
D(e) ~ D
2VaP2
— €
I'(D/2)(ch)?

©€> mc.

3This condition matters when, in some applications, the factor V in the local density of
state is replaced by an integral over density in real space.
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With these expressions for D(e) we can convert the sums over l-particle
states into integrals weighted by the density of 1-particle states.

Example: average number of nonrelativistic MB particles [tex112]:

N = ize_ﬁgk = /OO deD(€)ze P = Ve A = h—2
£ 0 v 2wmkpT

Occupancy of 1-particle states:

The average occupation number of energy level €, depends on the two control
variables 7" and y via the compound variable 3(ex — p):

()
Blem 11 =~
1
n g .
() Faw_7 & BE
[ e Pl . MB.

Range of 1-particle energies: ¢, > 0.

BE gas restriction: ¢ <0 = S —p) > 0.

2.5

2.0

1.5¢

(i)

1.0F

0.5¢

0.0 :
-2 -1

The BE and FD gases are well approximated by the MB gas if the thermal
wavelength A7 is small compared to the average interparticle distance d.
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v\ /P
Average distance between particles: d = (./\_/) (rough measure).

Condition from graph: B(e; — p) > 1,

= —fu>1 = fr=zxl.

Result from above: N = V_;’ = z= jX D
AT %
Conclusion: z <1 = j%/’ < AL
Exercises:
> Classical ideal gas [tex94]
> Ultrarelativistic ideal gas [tex169]
>> Density fluctuations [tex95]
> Density fluctuations and compressibility [tex96]
> Energy fluctuations and thermal response functions [tex103]
>> Occupation number fluctuations [tex110]
> Density of 1-particle states [tex111]
> Maxwell-Boltzmann gas in D dimensions [tex112]
> Some fantasy gas [tex171]
> Ideal lattice gase [tex172]
> Entropy and internal energy from state occupancies [tex178§]
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