
Grandcanonical Ensemble [tsc13]

In an open thermodynamic system, not only the energy content fluctuates,
but also the number of particles. This complicates the search for the equi-
librium condition, but the benefit is immense as we shall see.

Consider a classical system with an average internal energy U and an average
number N of particles in a region of volume V .

A set of phase spaces ΓN , N = 0, 1, 2, . . . with probability densities ρN(X)
and interaction Hamiltonians HN(X) is required for the specification.

Extremum principle:

Determine the ρN(X) that maximize the Gibbs entropy subject to three
auxiliary conditions: normalization and averages of energy and number of
particles:

– Gibbs entropy:1 S = −kB
∞∑
N=0

∫
Γ

d6NX ρN(X) ln[CNρN(X)],

– normalization:
∞∑
N=0

∫
ΓN

d6NX ρN(X) = 1,

– internal energy: 〈H〉 .=
∞∑
N=0

∫
ΓN

d6NX ρN(X)HN(X) = U ,

– number of particles: 〈N〉 .=
∞∑
N=0

∫
ΓN

d6NX ρN(X)N = N .

Application of calculus of variation with Lagrange multipliers α0, αU , αN :

δ

[
∞∑
N=0

∫
ΓN

d6NX {−kBρN ln[CNρN ] + α0ρN + αUHNρN + αNNρN}

]
= 0

⇒
∞∑
N=0

∫
ΓN

d6NXδρN {−kB ln[CNρN ]− kB + α0 + αUHN + αNN} = 0

These integrals must vanish for arbitrary variations δρN . In consequence,
the contents of each {· · · } must vanish.

⇒ ρN(X) =
1

CN
exp

(
α0

kB
− 1 +

αU
kB
HN(X) +

αN
kB

N

)
.

1Adding a (constant) term for N = 0 in each sum is a mere convenience and makes no dif-
ference. The values CN = h3N (CN = h3NN !) are for distinguishable (indistinguishable)
particles as explained in [tsc10].
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We determine the three Lagrange multipliers by substitution of ρN(X) into
the auxiliary conditions. We begin with the normalization and name the
resulting integral expression:

exp

(
1− α0

kB

)
=

∞∑
N=0

1

CN

∫
ΓN

d6NX exp

(
αU
kB
HN(X) +

αN
kB

N

)
.
= Z.

We implement the other two conditions with {· · · } from above as follows:

∞∑
N=0

∫
ΓN

d6NX ρN(X){−kB ln[CNρN(X)]−(kB−α0)+αUHN(X)+αNN} = 0.

The four terms of this sum of integrals are readily related to the entropy
S, the quantity named Z, internal energy U , and the average number N of
particles, respectively:

⇒ S − kB lnZ + αUU + αNN = 0.

With αU = −1/T and αN = µ/T , this is a familiar thermodynamic relation:

⇒ U +
1

αU
S +

αN
αU
N =

kB
αU

lnZ ⇔ U − TS − µN = Ω.

Grand potential: Ω(T, V, µ) = −kBT lnZ = −pV.

Grandcanonical partition function:

Z =
∞∑
N=0

1

CN

∫
ΓN

d6NX e−β(HN (X)−µN).

Equilibrium probability densities: ρN(X) =
1

ZCN
e−β(HN (X)−µN).

Thermodynamic functions from grand potential:

– entropy: S = −
(
∂Ω

∂T

)
V,µ

,

– pressure: p = −
(
∂Ω

∂V

)
T,µ

,

– average number of particles: N = −
(
∂Ω

∂µ

)
T,V

.
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Fugacity: z
.
= eµ/kBT (often used as independent variable instead of µ).

The grand partition function is rendered as Z(β, V, µ) or Z(β, V, z).

Relation between canonical and grandcanonical partition functions:

Z =
∞∑
N=0

eµN/kBTZN =
∞∑
N=0

zNZN .

Open system of indistinguishable noninteracting particles:

ZN =
1

N !
Z̃N , Z =

∞∑
N=0

1

N !
zN Z̃N = ezZ̃

⇒ Ω = −kBT lnZ = −kBTzZ̃.

Density fluctuations and compressibility:

Average number of particles (in some volume V ):

N = 〈N〉 =
∞∑
N=0

1

ZCN

∫
ΓN

d6NX Ne−β(HN (X)−µN) =
1

Zβ

∂Z

∂µ
=

1

β

∂

∂µ
lnZ.

Alternatively: N = −
(
∂Ω

∂µ

)
T,V

=
∂

∂µ

(
β−1 lnZ

)
=

1

β

∂

∂µ
lnZ.

Fluctuations in particle number (in volume V ):

〈N2〉 − 〈N〉2 =
1

Zβ2

∂2Z

∂µ2
−
[

1

Zβ

∂Z

∂µ

]2
(i)
=

1

β2

∂2 lnZ

∂µ2
.

(i):
1

β2

∂2 lnZ

∂µ2
=

1

β2

∂

∂µ

1

Z

∂Z

∂µ
=

1

Zβ2

∂2Z

∂µ2
+

1

β2

(
− 1

Z2

)(
∂Z

∂µ

)2

= . . .

Use
∂

∂µ
lnZ = βN .

⇒ 〈N2〉 − 〈N〉2 =
1

β2

∂(β〈N〉)
∂µ

= kBT

(
∂N
∂µ

)
TV

.

Use the Gibbs-Duhem relation, V dp−Ndµ− SdT = 0.

⇒ dµ =
V

N
dp− S

N
dT ⇒

(
∂µ

∂(V/N )

)
T

=
V

N

(
∂p

∂(V/N )

)
T

.
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Use

(
∂

∂(V/N )

)
V

=

(
∂(V/N )

∂N

)−1

V

∂

∂N
= −N

2

V

∂

∂N
.

Use

(
∂

∂(V/N )

)
N

=

(
∂(V/N )

∂V

)−1

N

∂

∂V
= N ∂

∂V
.

⇒ − N
2

V

(
∂µ

∂N

)
TV

= V

(
∂p

∂V

)
TN

.

Isothermal compressibility: κT
.
= − 1

V

(
∂V

∂p

)
TN

.

⇒
(
∂µ

∂N

)
TV

=
V

N 2
κ−1
T ⇒ 〈N2〉 − 〈N〉2 =

N 2

V
kBTκT .

An alternative expression for 〈N2〉−〈N〉2 is calculated in [tex95]. The density
fluctuations for a classical ideal gas are calculated in [tex96].

At the critical point of a liquid-gas transition, the isotherm has an inflection
point with zero slope, ∂p/∂V = 0, implying κT →∞. The strongly enhanced
density fluctuations are responsible for critical opalescence.

Gentle introduction to quantum statistics:

Quantum mechanics demands that the many-body eigenvectors have a defi-
nite symmetry under permutation of identical particles. This requirement is
often easiest to implement in the grandcanonical ensemble.

Consider an ideal quantum gas. Bosons have spin s = 0, 1, 2, . . . and sym-
metric eigenvectors. Fermions have spin s = 1

2
, 3

2
, 5

2
, . . . and antisymmetric

eigenvectors. It is safe to ignore the spin for what follows immediately.

Hamiltonian: ĤN =
N∑
`=1

ĥ`.

1-particle eigenvalue equation: ĥ`|k`〉 = ε`|k`〉.

N -particle eigenvalue equation: ĤN |k1, . . . ,kN〉 = EN |k1, . . . ,kN〉.

Total energy: EN =
N∑
`=1

ε`, ε` =
~2k2

`

2m
.

N -particle product eigenstates: |k1, . . . ,kN〉 = |k1〉 . . . |kN〉.

Each particle is identified by its wave vector ki.
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Permutation symmetry:

Exchanging the wave numbers of otherwise identical particles does not pro-
duce a distinct quantum state. This is important in sums over states.

Product wave functions are readily symmetrized or antisymmetrized by tak-
ing specific linear combinations.2

B Bosons: symmetrized states |k1, . . . ,kN〉(S).

N = 2: |k1,k2〉(S) =
1√
2

(|k1〉|k2〉+ |k2〉|k1〉).

B Fermions: antisymmetrized states |k1, . . . ,kN〉(A).

N = 2: |k1,k2〉(A) =
1√
2

(|k1〉|k2〉 − |k2〉|k1〉).

Occupation number representation:

B Bosons: |k1, . . . ,kN〉(S) .= |n1, n2, . . .〉, nk = 0, 1, 2, . . .

B Fermions: |k1, . . . ,kN〉(A) .= |n1, n2, . . .〉, nk = 0, 1.

Antisymmetric wave functions vanish identically if two particles have iden-
tical wave numbers. Hence the single-occupancy restriction for fermionic
1-particle states.

Here k` represents the wave vector of `th particle, whereas nk refers to the
number of particles in the kth 1-particle state.

The label k of a 1-particle state corresponds (in the current context) to the
wave number k of a particle if it occupies that state. The energy εk of a
1-particle state is the energy ε` of particle ` if it occupies that state.

– Energy: Ĥ|n1, n2, . . .〉 = E|n1, n2, . . .〉, E =
∞∑
k=1

nkεk.

– Number of particles: N̂ |n1, n2, . . .〉 = N |n1, n2, . . .〉, N =
∞∑
k=1

nk.

In the microcanonical ensemble, E and N are fixed. In the canonical ensem-
ble, 〈E〉 is controlled by the temperature T . In the grandcanonical ensemble,
〈N〉 is controlled by the chemical potential µ.

2The (readily available) expressions for general N are of no concern here.
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Canonical partition function:

ZN =
′∑
{nk}

σ(n1, n2, . . .) exp

(
−β

∞∑
k=1

nkεk

)
.

The sum
′∑
{nk}

is subject to the constraint
∞∑
k=1

nk = N .

The statistical-weight σ(n1, n2, . . .) depends on the symmetry requirement:

B Bose-Einstein statistics: σBE(n1, n2, . . .) = 1 for nk = 0, 1, 2, . . .

B Fermi-Dirac statistics: σFD(n1, n2, . . .) =

{
1 : if nk = 0, 1,
0 : otherwise.

.

What is the statistical weight factor for the Maxwell-Boltzmann gas?

We recall the partition function for the classical ideal gas from [tsc11] and
adapt it to fit the notation used here:

ZN =
1

N !
Z̃N =

1

N !

(
∞∑
k=1

e−βεk

)N

.

Next we use a multinomial generalization of the binomial expansion for the
contents of parenthesis:

(a+ b)N =
N∑
n=1

N !

n!(N − n)!
anbN−n.

⇒ ZN =
1

N !

′∑
{nk}

N !

n1!n2! . . .

(
e−βε1

)n1
(
e−βε2

)n2 · · ·

Then we make contact with the general expression above, which determines
the statistical weight:

ZN =
′∑
{nk}

1

n1!n2! . . .
exp

(
−β

∞∑
k=1

nkεk

)
.

B Maxwell-Boltzmann statistics: σMB(n1, n2, . . .) =
1

n1!n2! . . .
.

All three statistical weights are the same if multiple occupancy of 1-particle
states is very unlikely. This is the case in dilute gases at high temperatures.
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Grandcanonical partition function:

The constrained sum in the canonical partition function, which makes its
evaluation difficult, is turned into an unconstrained sum when we switch to
the grandcanonical ensemble.

⇒ Z =
∞∑
N=0

zNZN =
∑
{nk}

σ(n1, n2, . . .) exp

(
−β

∞∑
k=1

nk(εk − µ)

)
,

where we have used zN = eβµN = exp

(
βµ

∞∑
k=1

nk

)
.

In all three cases, FD, BE, and MB, the exponential function can be factor-
ized. Sums over nk can then be evaluated independently.

B FD statistics: each sum has just terms:

ZFD =
1∑

n1=0

1∑
n2=0

· · · exp

(
−β

∞∑
k=1

nk(εk − µ)

)
=
∞∏
k=1

1∑
nk=0

ze−βεknk .

⇒ ZFD =
∞∏
k=1

(
1 + ze−βεk

)
.

B BE statistics: each sum is a geometric series:

ZBE =
∞∑

n1=0

∞∑
n2=0

· · · exp

(
−β

∞∑
k=1

nk(εk − µ)

)
=
∞∏
k=1

∞∑
nk=0

[
ze−βεk

]nk .

⇒ ZBE =
∞∏
k=1

1

1− ze−βεk
.

B MB statistics: each sum is the series expansion of an exponential fct.:

ZMB =
∞∑

n1=0

∞∑
n2=0

· · · 1

n1!n2! . . .
exp

(
−β

∞∑
k=1

nk(εk − µ)

)
.

⇒ ZMB =
∞∏
k=1

∞∑
nk=0

1

nk!

[
ze−βεk

]nk =
∞∏
k=1

exp
(
ze−βεk

)
.

The grandcanonical partition function for each statistics is a product of terms
pertaining to 1-particle states.
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Grand potential:

Ω(T, V, µ) = −kBT lnZ = U − TS − µN = −pV.

The natural independent variables are as stated. Sometimes the fugacity z is
substituted for the chemical potential µ. Care must be exercised with partial
derivatives.

B ΩFD = −kBT
∞∑
k=1

ln
(
1 + ze−βεk

)
= −kBT

∞∑
k=1

ln
(
1 + e−β(εk−µ)

)
,

B ΩBE = kBT

∞∑
k=1

ln
(
1− ze−βεk

)
= kBT

∞∑
k=1

ln
(
1− e−β(εk−µ)

)
,

B ΩMB = −kBT
∞∑
k=1

ze−βεk = −kBT
∞∑
k=1

e−β(εk−µ).

The dependence of Ω on T and µ is explicit. Its dependence on V is concealed
in the 1-particle energies εk and made explicit later.

Average number of particles and state occupancies:

N = −
(
∂Ω

∂µ

)
V,T

=
∞∑
k=1

〈nk〉 =



∞∑
k=1

1

z−1eβεk + 1
: FD,

∞∑
k=1

1

z−1eβεk − 1
: BE,

∞∑
k=1

ze−βεk : MB.

Entropy and state occupancies: [tex178]

S = −
(
∂Ω

∂T

)
V,µ

=



−kB
∞∑
k=1

[
〈nk〉 ln〈nk〉+ (1− 〈nk〉) ln(1− 〈nk〉)

]
: (FD)

− kB
∞∑
k=1

[
〈nk〉 ln〈nk〉 − (1 + 〈nk〉) ln(1 + 〈nk〉)

]
: (BE)

− kB
∞∑
k=1

[
〈nk〉 ln〈nk〉 − 〈nk〉

]
: (MB)
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Internal energy and state occupancies: [tex178]

U = Ω + TS + µN =
∞∑
k=1

εk〈nk〉.

Fluctuations of state occupancies: [tex110]

〈nk〉 = −β−1∂ lnZ

∂εk
, 〈n2

k〉 − 〈nk〉2 = β−2∂
2 lnZ

∂ε2k
= −β−1∂〈nk〉

∂εk
.

Density of states:

Thus far we derived all expressions for thermodynamic quantities of quantum
gases as sums over 1-particle states. For their further evaluation, we must
know the distribution of 1-particle energies εk.

Particles (fermions or bosons) of rest mass m have relativistic energy-momen-
tum relation,

ε(p) =
√
m2c4 + p2c2 −mc2  


p2

2m
: ε� mc2,

pc : ε� mc2,

with the nonrelativistic and ultrarelativistic limits indicated.

Consider a hypercubic box of volume V = LD, small enough that the density
of particles in real space can be assumed uniform.3 The density of 1-particle
states is uniform in k-space: (L/2π)D.

Invoking isotropy we can write for the density of energy levels:

D(ε)dε =

(
L

2π

)D
dDk =

V

(2π)D
AD kD−1dk, AD =

2πD/2

Γ(D/2)
.

Using ε(p) with p = ~k we obtain the result [tex111],

D(ε) =
VAD
(hc)D

εD/2−1
(
ε+ 2mc2

)D/2−1(
ε+mc2

)
.

In the nonrelativistic and ultrarelativistic limits this relation turns into,

D(ε)  


V

Γ(D/2)

(
2πm

h2

)D/2
εD/2−1 : ε� mc2

2V πD/2

Γ(D/2)(ch)D
εD−1 : ε� mc2.

3This condition matters when, in some applications, the factor V in the local density of
state is replaced by an integral over density in real space.
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With these expressions for D(ε) we can convert the sums over 1-particle
states into integrals weighted by the density of 1-particle states.

Example: average number of nonrelativistic MB particles [tex112]:

N =
∞∑
k=1

ze−βεk =

∫ ∞
0

dεD(ε)ze−βε =
V z

λDT
, λT =

√
h2

2πmkBT
.

Occupancy of 1-particle states:

The average occupation number of energy level εk depends on the two control
variables T and µ via the compound variable β(εk − µ):

〈nk〉 =



1

eβ(εk−µ) + 1
: FD,

1

eβ(εk−µ) − 1
: BE,

e−β(εk−µ) : MB.

Range of 1-particle energies: εk ≥ 0.

BE gas restriction: µ ≤ 0 ⇒ β(εk − µ) ≥ 0.

-2 -1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

β (ϵk-μ)

〈n
k
〉

FD

MB BE

The BE and FD gases are well approximated by the MB gas if the thermal
wavelength λT is small compared to the average interparticle distance d.
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Average distance between particles: d =

(
V

N

)1/D

(rough measure).

Condition from graph: β(εk − µ)� 1,

⇒ − βµ� 1 ⇒ eβµ = z � 1.

Result from above: N =
V z

λDT
⇒ z =

N
V
λDT .

Conclusion: z � 1 ⇒ V

N
� λDT .

Exercises:

B Classical ideal gas [tex94]

B Ultrarelativistic ideal gas [tex169]

B Density fluctuations [tex95]

B Density fluctuations and compressibility [tex96]

B Energy fluctuations and thermal response functions [tex103]

B Occupation number fluctuations [tex110]

B Density of 1-particle states [tex111]

B Maxwell-Boltzmann gas in D dimensions [tex112]

B Some fantasy gas [tex171]

B Ideal lattice gase [tex172]

B Entropy and internal energy from state occupancies [tex178]

11


