
Canonical Ensemble II [tsc12]

This module presents further applications of the canonical ensemble to sys-
tems of noninteracting degrees of freedom. Surprisingly diverse physical phe-
nomena can be inferred from the canonical partition function.

Vibrational heat capacities of solids:

The lowest-energy configuration of a macroscopic system ofN identical atoms
or molecules is a perfect lattice. This is the equilibrium state at T = 0. It
has zero entropy.

Heat input dQ = CdT causes lattice vibrations. In the following we study
vibrational heat capacities C in successively improved approximations.1

There are many other contributions to the heat capacity of solids originating
in the magnetism of electrons or the motion of electrons in conductors, for
example, which will be discussed in due course.

Theory of Dulong and Petit:

Considers an array of N classical 3D harmonic oscillators with identical fre-
quencies, representing atoms bound to a rigid lattice by a harmonic force.
The Dulong-Petit result for the vibrational heat capacity,

C = 3NkB,

is T -independent and is calculated in [tex74] in the microcanonical ensemble
and in [tex78] in the canonical ensemble.

The main insufficiency of the Dulong-Petit result is that C does not ap-
proach zero in the low-temperature limit, in violation of the third law and in
contradiction to empirical evidence.

Theory of Einstein:

Considers instead an array of N quantum 3D harmonic oscillators with iden-
tical frequencies, again representing atoms bound to a rigid lattice by a har-
monic force. The Einstein result for the vibrational heat capacity,

C =

(
ΘE

T

)2
3NkBe

ΘE/T

(eΘE/T − 1)
2 , kBΘE = ~ω,

1What is measured in solids, for the most part, is Cp rather than CV , with p being the
ambient air pressure. It is common to drop the subscript p in this context.
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approaches zero exponentially in the low-T limit, C ∼ e−ΘE/T , and connects
with the Dulong-Petit result, C = 3NkB, at high T .

Einstein’s result is worked out in [tex75] for the microcanonical ensemble
and in [tex82] for the canonical ensemble. Its main insufficiency is that it
contradicts experimental evidence, which suggests C ∼ T 3 at low T .

Atoms interacting via harmonic forces:

Harmonic interaction forces are bilinear in the atomic positions qi.

H =
3N∑
i=1

p2
i

2m
+
∑
ij

Aijqiqj =
3N∑
i=1

[
P 2
i

2m
+

1

2
mω2

iQ
2
i

]
.

The coupling constants are elements of what is called the dynamical matrix
{Aij}, which is real and symmetric.

The second equation results from a (diagonalizing) transformation to normal-
mode coordinates. In this context the normal modes are named phonons.

At this stage, we have arrived at a classical theory which has the same flaws
as that of Dulong and Petit. Quantization of 3N independent oscillators of
arbitrary normal-mode frequencies ωi is straightforward:

H =
3N∑
i=1

~ωi
(
ni +

1

2

)
, ni = 0, 1, 2, . . .

The Helmholtz free energy (in generalization of the result in [tex82]) reads:

A =
1

2

3N∑
i=1

~ωi + kBT
3N∑
i=1

ln
(
1− e−β~ωi

)
.

Theory of Debye:

The normal modes consist, in general, of multiple bands of (acoustic and
optical) phonons.2

In Debye’s theory, the normal modes are replaced by a single branch of sound
waves with linear dispersion, ω = ck, as is expected in a continuous isotropic
elastic medium.

2Optical phonons have nonzero frequencies in the the long-wavelength limit. Their role in
low-temperature heat capacities is insignificant.
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– Total number of modes: 3N (as in original lattice model).

– Density of modes in k-space:
V

(2π)3
.

– Number of polarizations: 3 (2 transverse, 1 longitudinal).

– Number of modes in interval dω = cdk (use d3k = 4πk2dk):

n(ω)dω = (3)
V

(2π)3
(4π)

ω2

c2

dω

c
=

3V

2π2c3
ω2dω.

– Cutoff at Debye frequency ensures 3N modes:

3V

2π2c3

∫ ωD

0

dω ω2 = 3N ⇒ ω3
D =

6Nπ2c3

V
.

– Density of modes rewritten: n(ω) =
9N

ω3
D

ω2.

– Integral expression for Helmholtz potential:

A(T,N) =
9N~
2ω3

D

∫ ωD

0

dω ω3 +
9NkBT

ω3
D

∫ ωD

0

dω ω2 ln
(
1− e−β~ω

)
.

The resulting vibrational heat capacity is calculated in [tex83] and does show
the experimentally observed ∼ T 3 behavior as T → 0 (see [tsl29]):

C = 9NkB

(
T

ΘD

)3 ∫ ΘD/T

0

dx
x4ex

(ex − 1)2 , ΘD = ~ωD/kB.

Paramagnetism of localized magnetic dipoles:

Paramagnetic salts contain localized ions with permanent magnetic dipole
moments associated with unpaired electron spins.

No interaction potential energy and no kinetic energy is associated with the
magnetic dipole moments. Hence the internal energy vanishes identically,
U ≡ 0, which implies that CM ≡ 0.

The microstate of a system of magnetic dipoles,

mi, i = 1, . . . , N,

is specified by their orientation relative to an external magnetic field H. The
Hamiltonian expressing the interaction between moments and field,

H = −
N∑
i=1

mi ·H = −H
N∑
i=1

mz
i ,
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produces the co-called the Zeeman energy. It favors alignment of the mag-
netic moments with the magnetic field.

The localized moments can be treated as distinguishable particles. They do
not need to have a definite permutation symmetry.

The canonical partition function, in this case leads to the Gibbs potential:

ZN = Tre−βH, G(T,H,N) = −kBT lnZN .

Macroscopic equilibrium states in the canonical ensemble are characterized
by magnetization,

M(T,H,N)
.
=

N∑
i=1

〈mi〉 =
N∑
i=1

〈mz
i 〉 = −

(
∂G

∂H

)
T,N

.

The thermodynamic equation of state, M = M(T,H,N), in combination
with the caloric equations of state, CM ≡ 0, inferred from empirical informa-
tion, can be used to reconstruct the Gibbs free energy (see [tsc4]).

Langevin paramagnetism:

The magnetic moment is described as a 3-component vector of unit length:

mi = (mx
i ,m

y
i ,m

z
i ) = (sin θi cosφi, sin θi sinφi, cos θi).

Each mi represents one degree of freedom described by one pair of canonical
coordinates qi = φi, pi = cos θi.

– Partition function evaluated in spherical coordinates:

ZN =

(
4π

sinh(βH)

βH

)N
.

– Gibbs free energy: G(T,H,N) = −kBT lnZN .

– Magnetization: M
.
= −

(
∂G

∂H

)
T,N

= NL(y), y
.
= βH.

– Langevin function: L(y)
.
= coth(y)− 1

y
.

– A more systematic and complete analysis, which includes the isother-
mal susceptibility χT and the heat capacity CH , is worked out in [tex84].
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Two-level system:

The magnetic moment originates from a single electron spin. This is a two-
level system: E± = ±1

2
H (in scaled units). Two-level systems have many

applications unrelated to paramagnetism.

– Partition function: ZN =

[
2 cosh

(
1

2
βH

)]N
.

– Gibbs free energy: G(T,H,N) = −kBT lnZN .

– Magnetization: M
.
= −

(
∂G

∂H

)
T,N

=
N

2
tanh

(
1

2
βH

)
.

– A more systematic and complete analysis, which includes the isother-
mal susceptibility χT and the heat capacity CH , is worked out in [tex85].

Brillouin paramagnetism:

The magnetic moment in this case originates from an effective spin of quan-
tum number s = 1

2
, 1, 3

2
, . . . The magnetic moment in appropriate units is

quantized as follows:

mz
i = −s,−s+ 1, . . . , s− 1, s.

The canonical partition function is calculated in exercise [tex86].

– Partition function: ZN =

[
sinh

(
(s+ 1

2
)x
)

sinh
(

1
2
x
) ]N

, x
.
=

H

kBT
.

– Gibbs free energy: G(T,H,N) = −kBT lnZN .

– Magnetization: M
.
= −

(
∂G

∂H

)
T,N

= MsatBs(y), y = sx.

Saturation value: Msat = Ns.

Rescaled magnetization: M̃
.
=
Msat

s
Bs(y).

– Brillouin function: Bs(y)
.
=

2s+ 1

2J
coth

(
2s+ 1

2s
y

)
− 1

2s
coth

( y
2s

)
.

Quantum limit: B 1
2
(y) = tanh(y).

Classical limit: B∞(y) = coth(y)− 1

y
.

– A more systematic and complete analysis is worked out in [tex86].
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Fluctuations in a magnetic system:

Consider a system of N interacting magnetic moments with components mi

in the direction of an external magnetic field of magnitude H.

Hamiltonian: H = Hint −HM.

Canonical partition function: ZN = Tr e−βH.

Gibbs free energy: G(T,H,N) = −kBT lnZN .

Magnetisation: M =
N∑
i=1

〈mi〉 =
1

ZN
Tr
[
M e−βH

]
= β−1 ∂

∂H
lnZN .

Enthalpy: E = U −HM = 〈H〉 =
1

ZN
Tr
[
H e−βH

]
= − ∂

∂β
lnZN .

Energy fluctuations and heat capacity [tex109]:

〈H2〉 − 〈H〉2 =
∂2

∂β2
lnZN = kBT

2CH .

Magnetisation fluctuations and susceptibility [tex109]:

〈M2〉 − 〈M〉2 = β−2 ∂2

∂H2
lnZN = kBTχT .

Gases with internal degrees of freedom

Dilute molecular gases are still very well approximated by the classical ideal
gas regarding their translational motion, but their internal degrees of freedom
(rotations and vibrations) must be taken into account.

It is reasonable to assume that translational (T ), rotational (R), and vibra-
tional (V ) degrees of freedom are independent of each other.3

H =
N∑
i=1

[
H

(i)
T +H

(i)
R +H

(i)
V

]
⇒ ZN =

1

N !
Z̃N , Z̃ = Z̃T Z̃RZ̃V .

Quantum effects in the rotational and vibrational degrees of freedom are
attributes of individual molecules and will be analyzed here in what follows.

Quantum effects in the translational degrees of freedom are related to the
permutation symmetry of particles. They will be analyzed later and sepa-
rately for bosons and fermion.

3The justification is, in part, based on the empirical evidence that in most molecules
rotational degrees of freedom are thermally activated at much lower temperatures than
vibrational degrees of freedom.
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Translational motion (classical):

A summary statement of results derived previously reads as follows [tex76]:

H
(i)
T =

p2
i

2m
, Z̃T =

V

λ3
T

, λT =

√
h2

2πmkBT
, C

(T )
V =

3

2
NkB.

Quantum statistics comes into play when the average distance between molecules,
∼ (V/N)1/3, is comparable to the thermal wavelength λT .

Rotational motion (classical):

Here we use resources from classical mechanics (rigid-body dynamics). We
start with the Hamiltonian for a symmetric top, representing a molecule with
one symmetry axis that is at least threefold.

B NH3 (multi-atomic molecule):

The rotational motion has 3 degrees of freedom. The canonical coordinates
are the Euler angles θ, φ, ψ with conjugate momenta pθ, pφ, pψ. The inertia
tensor with uniaxially symmetry has principal moments I1 = I2, I3.

Hamiltonian: H
(i)
R =

p2
iθ

2I1

+
p2
iψ

2I3

+
(piφ − piψ cos θi)

2

2I1 sin2 θi
.

Ranges: 0 ≤ θi ≤ π, 0 ≤ φi, ψi ≤ 2π, −∞ < piθ, piφ, piψ < +∞.

⇒ Z̃R =
1

π~3

√
(2πI1kBT )2(2πI3kBT ) ⇒ C

(R)
V =

3

2
NkB [tex87].

B HCl (two-atomic heteronuclear molecule):

In this case we have I3 � I1 = I2. The rotation about the molecular axis is
frozen out due to a quantum effect discussed later.

Hamiltonian: H
(i)
R =

p2
iθ

2I1

+
p2
iφ

2I1 sin2 θi
, 0 ≤ θi ≤ π, 0 ≤ φi ≤ 2π.

⇒ Z̃R =
2I1kBT

~2
⇒ C

(R)
V = NkB [tex88].

B N2 (two-atomic homonuclear molecule):

The restricted range, 0 ≤ φ ≤ π, of one variable owing to the reflection
sysmmetry affects the entropy, but not the heat capacity. This change does
affect the entropy but not the heat capacity [tex88].
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Rotational motion (quantum):

Consider a two-atomic molecule.

Angular momentum operator: L.

Hamiltonian operator: HR =
1

2I
L2.

Energy levels: Elm =
l(l + 1)~2

2I
; l = 0, 1, 2, . . . ; m = −l,−l + 1, . . . , l.

Degeneracy: (2l + 1)-fold.

Partition function: Z̃R =
∞∑
l=0

+l∑
m=−l

e−βElm =
∞∑
l=0

(2l + 1)e−βl(l+1)~2/2I .

Characteristic temperature: kBΘR =
~2

2I
.

Low-T heat capacity [tex89]: CR(T ) ' 12NkB

(
ΘR

T

)2

e−2ΘR/T : T � ΘR.

High-T asymptotics [tex90]: CR ' NkB

[
1 +

1

45

(
ΘR

T

)2

+ . . .

]
: T � ΘR.
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Vibrational motion (quantum):

Low-amplitude vibrational modes are, by default, normal harmonic modes.
Consider a molecule with f normal modes, each expressed by a pair (ql, pl)
of canonical coordinates.

Hamiltonian: HV =

f∑
l=1

(
p2
l

2ml

+
1

2
mlω

2
l q

2
l

)
.
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Partition functions: Z̃V =

f∏
l=1

[
1

eβ~ωl − 1

]
.

Characteristic temperatures: kBΘ
(l)
V = ~ωl.

Heat capacity: CV =

f∑
l=1

NkB

[
2T

Θ
(l)
V

sinh

(
Θ

(l)
V

2T

)]−2
T�Θ

(l)
V fNkB.
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In general, vibrational modes require much higher temperatures to be acti-
vated than rotational modes.

Typically: ΘR =
~2

2IkB
∼ 10K, ΘV =

~ωl
kB
∼ 1000K

Comparison of rotational and vibrational heat capacities of hydrogen molecules
with different isotopes:

H: 1H (hydrogen), D: 2H (deuterium), T: 3H (tritium)

[image from Greiner et al. 1995]
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Fine structure:

If the atomic ground state has zero orbital angular momentum (l = 0) and
nonzero spin angular momentum (s 6= 0), the entropy acquires an additive
constant, ∆S = NkB ln(2s+ 1). The heat capacity remains unaffected.

In the presence of an external magnetic field, this system is a paramagnetic
gas. The thermodynamics of dilute paramagnetic gases are the theme of
[tex22] and [tex133].

If the atomic ground state has l 6= 0 and s 6= 0, then the L-S coupling
produces a fine-structure splitting of the ground-state degeneracy:

Z̃FS =
∑
j

(2j + 1)e−βεj , |l − s| ≤ j ≤ l + s,

where j is the quantum number of the total angular momentum. If the lowest
level has j = j0, then the entropy of the atomic gas increases by

∆S = NkB ln
(2s+ 1)(2l + 1)

(2j0 + 1)

over a temperature range 0 < kBT . ∆ELS, where ∆ELS measures the total
L-S level splitting.

The contribution to the heat capacity, C
(FS)
V , is a function of T that rises

from zero exponentially, exhibits a smooth maximum at kBT ∼ ∆ELS, and
then dips back down to zero algebraically.4

The functional dependence of C
(FS)
V on T is very similar to that of the heat

capacity of a Langevin paramagnet as analyzed in [tex85] and [tex86].

Orthohydrogen and parahydrogen:

Molecular hydrogen H2 consists of two pairs of identical fermions: one pair of
electrons and one pair of protons. The electronic and nuclear wave functions
must both be antisymmetric.

The electronic ground state has a symmetric space part and an antisymmetric
spin part (spin singlet). Electronic excited states have energies high above
the range considered here.

Nuclear wave functions with symmetric spin part and antisymmetric space
part or vice versa are energetically close to each other.

4In practical reality, atomic gases with l 6= 0, s 6= 0 tend to form molecules or condense at
temperatures far above kBT ∼ ∆ELS .
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The energy levels of the nuclear wave function is dominated by its space part,
specifically by rotational modes with orbital quantum numbers l = 0, 1, 2, . . ..
Vibrational modes have much higher energies.

Two nuclear spin isomers of molecular hydrogen H2.

– Orthohydrogen: Nuclear spin part is symmetric (spin triplet) and nu-
clear space part is antisymmetric (odd l).

– Parahydrogen: Nuclear spin part is antisymmetric (spin singlet) and
nuclear space part is symmetric (even l).

At high T , the H2 gas at equilibrium contains 75% orthohydrogen and 25%
parahydrogen. The 3:1 ratio is a reflection of the nuclear spin degeneracy.

The lowest parahydrogen level is lower than the lowest orthohydrogen level
by ∆E/kB = ~2/kBI ' 175K. Conversion is slow in the absence of catalysts.

Cooling and condensing hydrogen may leave the majority of molecules in a
metastable state. The transition to equilibrium at low T releases significant
amounts of energy.

Rotational (R) factors of the canonical partition function under two distinct
conditions:

Z̃eq
R =

(
Z̃o + Z̃p

)N
, Z̃3:1

R =
(
Z̃o
)3N/4(

Z̃p
)N/4

,

Z̃o = 3
∑
odd l

(2l + 1)e−βl(l+1)~2/2I , Z̃p =
∑

even l

(2l + 1)e−βl(l+1)~2/2I

– The equilibrium expression {eq} is adequate when temperature is var-
ied slowly and in the presence of a catalyst that facilitates conversion
between isomers.

– The metastable state represented by expression {3:1} is adequate at
low T when the cooling faster is than the pace of equilibration, which
is very slow in the absence of a catalysts.

Storage of liquid hydrogen in the metastable is dangerous. Inadvertant con-
version releases significant amounts of energy, which may increase the pres-
sure beyond the strength of the container.
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Plot of internal energy versus temperature for the two isomers separately, for
the metastable {3:1} mixture, and for the stable {eq} mixture.

Plot of rotational heat capacity versus temperature for the two isomers sep-
arately, for the metastable {3:1} mixture, and for the stable {eq} mixture.
The boiling temperature is marked on the lower left.

[images from Wikipedia]
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