
Microcanonical Ensemble [tsc10]

Distribution functions are at the center of both kinetic theory and statistical
mechanics – very different distribution functions.

– Kinetic theory begins with one-particle distribution functions. Inter-
actions are accounted for in non-factorizing pair-distributions, 3-point
distributions etc.

– Statistical mechanics, by contrast, employs distributions of microstates
of macroscopic systems. Interactions are accounted for in the energies
of microstates, for example.

Classical Hamiltonian system:

Consider an autonomous classical dynamical system with 3N degrees of free-
dom (e.g. N particles moving in 3D space).

Canonical coordinates (6N in number): q1, . . . , q3N ; p1, . . . , p3N .

Hamiltonian function: H(q1, . . . , q3N ; p1, . . . , p3N).

Canonical equations: q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
; i = 1, . . . , 3N .

Dynamical variable: f(q1, . . . , q3N ; p1, . . . , p3N).

Hamilton’s equation of motion (expressed with a Poisson bracket):

df

dt
=

3N∑
i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
=

3N∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
.
= {f,H}.

Conserved quantity:
df

dt
= 0 ⇔ {f,H} = 0.

Energy conservation is guaranteed: {H,H} = 0 ⇒ dH

dt
= 0.

Points and trajectories in phase space:

The microstate of a classical system is specified by one point in the 6N -
dimensional phase space (Γ-space):

X
.
= (q1, . . . , q3N ; p1, . . . , p3N).

As time evolves, this point traces a trajectory through Γ-space. Cauchy’s
theorem dictates that phase-space trajectories do not intersect themselves or
each other. There are no collisions between phase points.
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In kinetic theory, microstates are described by N points in the 6D space
spanned by the position coordinates x, y, z and velocity coordinates vx, vy, vz
of a single particle. Particles do collide.

– In kinetic theory, two points in (x, y, z; vx, vy, vz) represent different
particles of the same macroscopic system.

– In statistical mechanics, two phase points may either represent the same
macroscopic system or different macroscopic systems:

Physical ensemble: each phase point represents the same system
in different microstates.

Statistical ensemble: each phase point represents a different but
equivalent system.

The conservation law,

H(q1, . . . , q3N ; p1, . . . , p3N) = const,

confines the motion of any phase point to a 6N − 1-dimensional hypersur-
face in Γ-space. The microcanoncial ensemble will take this restriction into
account, as we shall see.

Additional conservation laws, if they exist, will further reduce the dimen-
sionality of the manifold to which phase-space trajectories are confined.

Probability density in phase space:

Knowledge of the microstate of a macroscopic system is almost always limited
to a probability distribution.

Probability density (in Γ-space): ρ(X, t).

Normalization:

∫
Γ

d6NX ρ(X, t) = 1.

Expectation value of a dynamical variable f :

〈f〉 =

∫
Γ

d6NX f(X)ρ(X, t).

Solution of canonical equations expressed as probability density:

ρ(X, t) = δ
(
X−X(t)

)
.
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Probability flow in phase space:

Consider the probability density ρ(X, t) inside a volume V0 with surface S0

in Γ-space. Probability is conserved.

(a) If probability changes inside V0, it must flow through S0.

(b) Gauss’s theorem converts the surface integral into a volume integral.

∂

∂t

∫
V0

d6NX ρ(X, t)
(a)
= −

∮
S0

da · Ẋ ρ(X, t)
(b)
= −

∫
V0

d6NX∇X · [Ẋ ρ(X, t)].

Probability current: J(X, t)
.
= Ẋ ρ(X, t).

Continuity equation:
∂

∂t
ρ(X, t) +∇X · J(X, t) = 0.

In the context of a kinetic theory, a second equation between ρ and J is
provided by a constitutive law. This is not a legitimate option here.

Instead we must use ∇X · J = ∇X · [Ẋρ] = ρ∇X · Ẋ︸ ︷︷ ︸
0

+Ẋ · ∇Xρ.

Vanishing term: ∇X · Ẋ =
3N∑
i=1

[
∂q̇i
∂qi

+
∂ṗi
∂pi

]
=

3N∑
i=1

[
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

]
= 0.

Equation of motion for probability density:

⇒ ∂

∂t
ρ(X, t) + Ẋ · ∇Xρ(X, t) = 0.

Convective derivative:
d

dt
.
=

∂

∂t
+ Ẋ · ∇X.

Classical Liouville theorem:
d

dt
ρ(X, t) = 0.

Classical Liouville operator:

Use Ẋ · ∇Xρ =
3N∑
i=1

(
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

)
=

3N∑
i=1

(
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)
= {ρ,H}.

Liouville operator: L ≡ ı{H, } = ı

3N∑
i=1

(
∂H

∂qi

∂

∂pi
− ∂H

∂pi

∂

∂qi

)
.

Classical Liouville equation: ı
∂ρ

∂t
= ı{H, ρ} = Lρ.
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Formal solution of classical Liouville equation: ρ(X, t) = e−ıLtρ(X, 0).

L is a Hermitian operator.1 Hence all its eigenvalues are real. The time
evolution encoded in e−ıLt is oscillatory in nature.

The phase-space density ρ(X, t) cannot relax to equilibrium in any obvious
way. The Liouville equation reflects the time reversal symmetry of the un-
derlying microscopic dynamics.

Obtaining the broken time reversal symmetry of irreversible processes from
the Liouville equation is a central problem in statistical mechanics (topic of
ergodic theory).

Stationarity condition for phase-space probability density:

In spite of the difficulties in understanding how thermal equilibrium is reached
at the microscopic level of description, the condition of the classical phase-
space density is straightforward:

∂ρ

∂t
= 0 ⇒ Lρ = 0 ⇒ {H, ρ} = 0.

If ρ = ρ(H) then {H, ρ} = 0. A probability density which only varies in
direction perpendicular to the energy hypersurfaces in phase space is neces-
sarily time-independent.

Stationarity is a necessary condition for thermal equilibrium. Thermal equi-
librium hinges on a further criterion as we shall see, which will determine the
functional dependence of ρ(H).

Density operator:

Pure states of a quantum system are described by state vectors |π(t)〉. Gener-
ically, the instantaneous state of a quantum system is a mixed system, which
is described by the density operator ρ(t).

Diagonal representation: ρ(t) =
∑
i

pi|πi(t)〉〈πi(t)|,
∑
i

pi = 1.

The system is with probability pi in pure state |πi(t)〉. In this representation,
the Liouville operator is readily shown to be Hermitian, to be positive semi-
definite and to have unit trace.

1The classical Liouville operator, which acts on phase-space densities, can be shown to
be Hermitian (self-adjoint) if those densities are conceived as vectors in a complex space
with an inner product.
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Expectation value of an observable A: 〈A(t)〉 = Tr[Aρ(t)].

⇒ 〈A(t)〉 =
∑
i

pi〈πi(t)|A|πi(t)〉 =
∑
nn′

〈n|A|n′〉〈n′|ρ(t)|n〉.

The last expression uses the orthonormal basis {|n〉}. The expectation value
is then the trace of a matrix product, one of which is the density matrix.

Quantum time evolution:

Schrödinger equation: H|πi(t)〉 = ı~
∂

∂t
|πi(t)〉.

⇒ ı~
∂ρ

∂t
=
∑
i

pi [H|πi(t)〉〈πi(t)| − |πi(t)〉〈πi(t)|H] = Hρ− ρH = [H, ρ].

Liouville operator:2 L
.
=

1

~
[H, ].

Liouville equation: ı
∂ρ

∂t
=

1

~
[H, ρ] = Lρ.

Formal solution: ρ(t) = e−ıLtρ(0) = e−ıHt/~ρ(0)eıHt/~.

The time evolution of an expectation value can be carried by the density
operator ρ or by the dynamical variable A:

〈A(t)〉 = Tr[Ae−ıHt/~ρeıHt/~] = Tr[eıHt/~Ae−ıHt/~ρ].

von Neumann equation with formal solution:

ı~
∂ρ

∂t
= [H, ρ] ⇒ ρ(t) = e−ıHt/~ρ(0)eıHt/~.

Heisenberg equation with formal solution:

ı~
∂A

∂t
= −[H,A] ⇒ A(t) = eıHt/~A(0)e−ıHt/~.

Density matrix in energy representation H|λ〉 = Eλ|λ〉:

ρλλ′(t) =
∑
λλ′

〈λ|ρ|λ′〉e−i(Eλ−Eλ′ )t/~.

The oscillatory time evolution reminds us again of the problem associated
with the approach to equilibrium (to be tackled elsewhere).

2The Liouville operator is not an operator at the same level as the density operator and
the Hamiltonian. It is a super-operator of sorts. Demonstrating its Hermitian nature
requires a reinterpretation of the quantum mechanical operators H, ρ as vectors in a
space with an inner product.
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Stationarity condition for density operator:

As in the classical case, the condition for stationarity of the density operator
is straightforward:

ı~
∂ρ

∂t
= 0 ⇒ [H, ρ] = 0.

If the density operator is expressible as ρ(H) it commutes with H. Com-
mutability makes it diagonal in the energy representation:

ρ =
∑
λ

pλ|λ〉〈λ|.

The oscillatory off-diagonal elements of ρλλ′(t) have disappeared. Not all
stationary probability distributions {pλ} describe thermal equilibrium. The
further criterion is an extremum principle.

Gibbs entropy:

Q What criterion determines the functional dependence of ρ on H?

A ρ(H) must maximize the entropy functional S[ρ] subject to the con-
straints related to whether the system is isolated, closed, or open.

Q What is the functional dependence of S on ρ?

A It’s the Gibbs entropy, motivated by Boltzmann’s H-function and by
Shannon’s concept of uncertainty (discussed earlier):

– classical system: S[ρ] = −kB
∫
d6NX ρ(X) ln[CNρ(X)],

– quantum system: S[ρ] = −kB Tr[ρ ln ρ].

The constant CN in the classical expression allocates a specific phase-
space volume element to every microstate:3

– distinguishable particles: CN = h3N , h ' 6.62× 10−34Js,

– indistinguishable particles: CN = h3NN !.

The factor N ! compensates for overcounting indistinguishable permu-
tations of identical particles. No correction is necessary in quantum
mechanics, where microstates have a definite permutation symmetry.

3The constant CN , which is additive for a normalized ρ, makes the square-bracket dimen-
sionless. Its numerical value, dictated by Heisenberg’s uncertainty principle, establishes
consistency between quantum and classical statistics.
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Phase space allocated per quantum state:

The number of microstates that can be accommodated in a phase-space vol-
ume element d6NX is

d6NX

h3N
=

3N∏
i=1

[
1

h
dqidpi

]
.

Illustration of phase-space allocation for the harmonic oscillator (N = 1).

Hamiltonian: H =
p2

2m
+

1

2
mω2q2 =

hω

2π

(
n+

1

2

)
.

Classical trajectories are concentric ellipses with axes 2qmax, 2pmax.

Quantized amplitudes inferred from quantized energy:

qmax =

√
h

πmω

(
n+

1

2

)
, pmax =

√
hmω

π

(
n+

1

2

)
.

Area of ellipse: A(n) = πqmaxpmax = h(n+ 1/2).

Area per quantum state: A(n+ 1)− A(n) = h.

P

o
+

Microcanonical ensemble:

Thermodynamic systems in isolation have constant energy: H = const. We
use this fact in the evaluation of the Gibbs entropy, S = S[ρ], with the
stationarity condition, ρ = ρ(H), enforced.

Consider a classical system of N interacting particles confined to a volume
V at (conserved) internal energy U .

– The phase-space density ρ(X) is constant on an infinitesimally thin
energy shell, U ≤ H(X) ≤ U + ∆, and zero elsewhere.
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– Volume of energy shell: Ω∆(U, V,N) =

∫
U≤H(X)≤U+∆

d6NX.

⇒ ρ(X) =

{
Ω−1

∆ : U ≤ H(X) ≤ U + ∆

0 : otherwise,

– Entropy: S = −kB
∫
U≤H(X)≤U+∆

d6NX ρ(X) ln[CNρ(X)]

⇒ S(U, V,N) = kB ln

[
Ω∆(U, V,N)

CN

]
.

The dependence of S on the energy width ∆ is undesirable and can, in fact,
be avoided. In a high-dimensional space, most of the volume of a compact
object is contained in a thin surface skin.

Example: sphere in d-dimensional space

– Volume of sphere; V (r) = Cdr
d, Cd

.
=

πd/2

Γ(d/2 + 1)
.

– Volume of skin with width ∆: V∆(r) = V (r)− V (r −∆).

⇒ V∆(r)

V (r)
=

[
rd − (r −∆)d

]
rd

=

[
1−

(
1− ∆

r

)d]
=
[
1− e−d| ln(1−∆/r)|] .

– The deviation between V (r) and V∆(r) vanishes exponentially with
increasing d. In the phase space of a macroscopic system d = 6N is of
the order of Avogadro’s number.

If we replace the shell volume Ω∆(U, V,N) by the entire volume inside the
shell, Ω(U, V,N), the resulting entropy expression differs only by a term
∝ lnN , which is negligible in macroscopic systems.

⇒ S(U, V,N) = kB ln

[
Ω(U, V,N)

CN

]
, Ω(U, V,N) =

∫
H(X)≤U

d6NX.

For an isolated quantum system, H|n〉 = En|n〉, transcribing the conclusions
reached means counting energy levels with En < U :

Maximize S = −kB
∑
En<U

pn ln pn subject to the constraint
∑
En<U

pn = 1.

⇒ pn =
1

N<(U)
where N<(U) =

∑
En<U

. ⇒ S = kB ln[N<(U)].
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Aspects of significance:

– Of the two constraints, N = const and U = const, the microcanonical
ensemble observes both, the canonical ensemble only the first, and the
grandcanonical ensemble neither.

– For macroscopic systems with short-range interactions, the results of
all three ensembles are equivalent.

– Each ensemble naturally leads to a thermodynamic potential:

B microcanonical ens.: internal energy U or the entropy S;

B canonical ens.: Helmholtz potential A or Gibbs potential G;

B grandcanonical ens.: grand potential Ω.

Thermodynamic potentials are interrelated via Legendre transforms.

– Constraints tend to make the path toward the solution harder. The mi-
crocanonical ensemble with its two constraints is rarely the first choice.

– The microcanonical ensemble is often employed in astrophysics, where
entities of interest tend to be thermally isolated.

Simple applications:

B Classical ideal gas [tex73]

B Array of classical harmonic oscillators [tex74]

In these two applications, it is straightforward to calculate the phase-
space volume enclosed by an energy hypersurface.

B Array of quantum harmonic oscillators I [tex75]

Here we employ a combinatorial method to count the degeneracy of
energy levels.

B Array of quantum harmonic oscillators II [tex126]

B Quantum paramagnet [tex127]

Here we Fourier transform the sum
∑

λ δ(U − Eλ) into an integral∫
dk eNf(k) for N noninteracting degrees of freedom. For large N that

integral is amenable to evaluation by the saddle-point method.
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Entropy of mixing revisited:

Here we resolve the Gibbs paradox encountered earlier (in [tsc4]).

Consider two dilute gases in a rigid and insulat-
ing box separated by a mobile conducting wall:
N1 atoms on the left and N2 atoms on the right.

pp T T

V1 V2N1 N2

At thermal equilibrium: p1 = p2
.
= p, T1 = T2

.
= T ⇒ N1/V1 = N2/V2.

The removal of the internal wall initiates the mixing of particles 1 and 2
without any change in pressure or temperature.

Does the entropy incease or stay the same? The answer depends on whether
particles 1 and 2 are of the same kind (indistinguishable) or of a different
kind (distinguishable).

Mixing occurs without changes in any of the following quantities:

– total internal energy: U = U1 + U2,

– total volume: V = V1 + V2,

– total number of particles: N = N1 +N2.

Consider the Sackur-Tetrode formula for the entropy of an ideal gas [tex73]:

S(U, V,N) =
5

2
NkB +NkB ln

[
V

Nh3

(
4πmU

3N

)3/2
]
.

Distinguishable particles:

– Initial entropy: Sinit = S(U1, V1, N1) + S(U2, V2, N2)

– Final entropy: Sfin = S(U1, V1 + V2, N1) + S(U2, V1 + V2, N2)

– Entropy change: ∆S = N1kB ln
V1 + V2

V1

+N2kB ln
V1 + V2

V2

> 0.

Indistinguishable particles:

– Initial entropy: Sinit = S(U1, V1, N1) + S(U2, V2, N2)

– Final entropy: Sfin = S(U1 + U2, V1 + V2, N1 +N2)

– Entropy change: ∆S = 0.
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Negative temperatures:

Macrostates with negative (absolute temperature) can be realized in isolated
systems with a finite range of energy levels. Level-occupancy inversion can
be caused by laser pumping, for example.

Consider N noninteracting 2-level systems.

– Energy levels: ±ε.
– Occupancies, N± with N+ +N− = N .

– Internal energy: U = (N+ −N−)ε.

⇒ N+ =
1

2

[
N +

U

ε

]
, N− =

1

2

[
N − U

ε

]
.

Degeneracy of state with energy U : NU(U,N) =
N !

N+!N−!
.

Configurational entropy:

S(U,N) = kB lnNU(U,N) = kBN lnN − 1

2
kB

[
N +

U

ε

]
ln

(
1

2

[
N +

U

ε

])
−1

2
kB

[
N − U

ε

]
ln

(
1

2

[
N − U

ε

])

⇒ S

NkB
= ln 2− 1

2

[
1 +

U

Nε

]
ln

(
1 +

U

Nε

)
− 1

2

[
1− U

Nε

]
ln

(
1− U

Nε

)
.

Inverse temperature:
1

T
=

(
∂S

∂U

)
N

=
kB
2ε

ln

(
1− U/Nε
1 + U/Nε

)
.

S/N1.*

0n2-

0
o

Ti*

T>q T< O
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