
Equivalent-neighbor Ising model [tln98]

Consider an array of N localized spins σi = ±1 with an equivalent Ising-like
interaction between all pairs (Husimi-Temperley model).
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The spatial arrangement of the array including its dimensionality is arbitrary.
A meaningfult thermodynamic limit requires that the coupling strength is
inversely proportional to N .

Canonical partition function:
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This integral can be evaluated asymptotically for large N by the Laplace
method (saddle-point integral).
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Gibbs free energy per site of the array (with no magnetic field):
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Extrema of function f(K, y) = −1

2
Ky2 + ln

(
cosh(Ky)

)
.

– K ≤ 1: one maximum at y = 0,

– K > 1: two maxima at y = ±y0.
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The value y0 (order parameter) is the solution of y0 = tanh(Ky0).

The dependence of y0 on temperature is functionally equivalent to the mean-
field solution of the Ising model: M̄ = tanh(βzJM̄) with zJ = kBTMF.

Thermal fluctuations are more efficiently suppressed by interactions of longer
range than shorter range. Mean-field results are known to be more accurate
away from strong thermal fluctuations.

The equivalent-neighbor Ising model can be interpreted as a model of infinite-
range interactions. implying very strong suppression of thermal fluctuations.
Unsurprisingly then, the spontaneous ordering is mean-field like.
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