Mean-Field Ferromagnet [tln84]

Macroscopic specification:

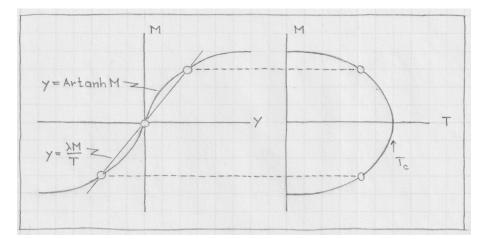
- caloric equation of state: $C_M = 0$,
- thermodynamic equation of state: $M = \tanh\left(\frac{H + \lambda M}{T}\right)$.

The mean-field term, λM , represents a positive feedback, mimicking a spinspin interaction favoring alignment.

The Langevin paramagnet $(\lambda = 0)$ is solved in [tex21] from a thermodynamic vantage point and in [tex85] as a statistical mechanics problem.

Magnetization: M(T, H)

It is instructive to examine the graphical solution of the transcendental equation, Artanh $M = \lambda M/T$, as sketched below.



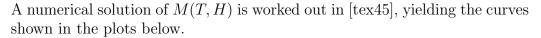
-M = 0: solution with full symmetry at all T,

- $M \neq 0$: solutions with broken symmetry at $T < T_{\rm c} = \lambda$.

Critical singularity (square-root cusp) identified via expansion:

Artanh
$$M = M + \frac{1}{3}M^3 + \dots = \lambda M/T \quad \Rightarrow M \sim \sqrt{3\left(\frac{T_c}{T} - 1\right)}.$$

The solution representing thermal equilibrium, M = 0 at $T \ge T_c$ and $M \ne 0$ at $T < T_c$, minimizes the Helmholtz free energy A(T, M) (analyzed below).



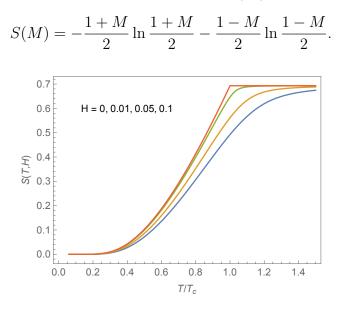


- The magnetization at $T < T_c$ is only truly spontaneous for H = 0. It is merely enhanced for $H \neq 0$.
- -M versus H at constant T are named magnetization curves.
- Magnetization curves change their shape qualitatively:
 - $T > T_{\rm c}$: no intercept, finite initial slope,
 - $T = T_{\rm c}$: no intercept, infinite initial slope,
 - $T < T_{\rm c}$: intercept, finite initial slope,
- Cusp singularity of the critical magnetization curve:

$$H = \operatorname{Artanh} M - M = \frac{1}{3}M^3 + \dots \Rightarrow M \sim (3H)^{1/3}.$$

Entropy: S(T, H)

The dependence on T and H of the entropy is entirely encoded in the function M(T, H) analyzed earlier and in the function S(M) derived in [tex45]:



- The low-temperature limit is consistent with the third law:

$$\lim_{T \to 0} S(T, H) = 0.$$

- The T-dependence of S(T, H) at $H \neq 0$ is smooth and monotonic.
- The function S(T, 0) has a linear-cusp singularity at T_c [tex45].
- The constant function S(T,0) at $T > T_c$ signals the inability of the system to absorb further heat.

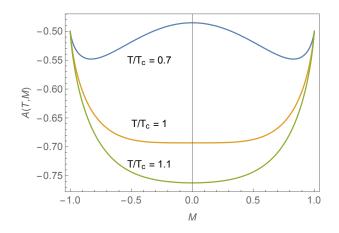
Helmholtz free energy: A(T, M)

The Helmholtz free energy is determined via integration of its differential,

$$dA = -SdT + HdM,$$

along a specific path in the (T, M)-plane, by use of the known functions S(M) and H(T, M) [tex45]:

$$A(T,M) = T\left[\frac{1+M}{2}\ln\frac{1+M}{2} + \frac{1-M}{2}\ln\frac{1-M}{2}\right] - \frac{1}{2}T_{c}M^{2}.$$

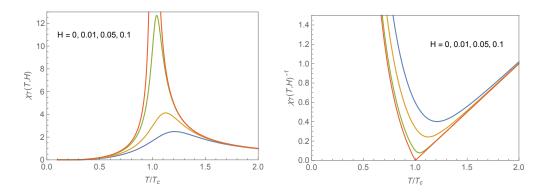


- The entropy S(M) and the thermodynamic equation of state H(T, M) are readily recovered from first partial derivatives.
- In the absence of a magnetic field, A(T, M) at given T will assume its minimum value: at M = 0 for $T \ge T_c$ and at $M \ne 0$ for $T < T_c$.

Isothermal susceptibility: $\chi_T(T,H) \doteq \left(\frac{\partial M}{\partial H}\right)_T$

Magnetic response function of the mean-field ferromagnet from [tex46]:

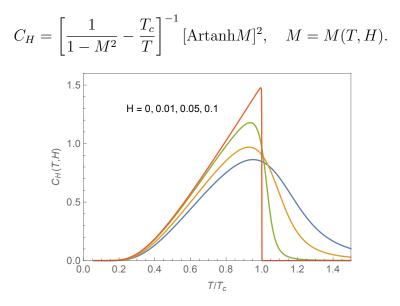
$$\chi(T,H) = \left[\frac{T}{1-M^2} - T_c\right]^{-1}, \quad M = M(T,H).$$



- The system is highly susceptible in the vicinity of $T_{\rm c}$.
- The susceptibility is suppressed at high T, where the influence of the magnetic field is weak, and at low T where the ordering is stable.
- The susceptibility has a strong power-law divergence at $T_{\rm c}$.

Heat capacity: $C_H(T, H) \doteq T \left(\frac{\partial S}{\partial T}\right)_H$

Thermal response function of the mean-field ferromagnet from [tex46]:



- Unlike the identically vanishing C_M , the heat capacity C_H has a non-trivial profile.
- $-C_H$ vanishes in the low-T limit in accordance with the third law.
- At $H \neq 0$ there is capacity for absorbing heat at all T > 0.
- At H = 0 there is only heat capacity at $T \leq T_c$.
- The singularity at $T_{\rm c}$ of this response function is a discontinuity.