Legendre transform [tln77]

The theory of Legendre transforms is well developed for a wide range of applications. Here we limit the discussion to a key attribute.

Given is a function f(x) with monotonic derivative f'(x). The goal is to replace the independent variable x by p = f'(x) with no loss of information.

No loss of information means that the transformation must be invertible. The function G(p) = f(x) with p = f'(x) is, in general, not invertible.

The Legendre transform circumnavigates this problem elegantly.

 \triangleright Forward direction: g(p) = f(x) - xp with p = f'(x).

 \triangleleft Reverse direction: f(x) = g(p) + px with x = -g'(p)

Example 1: $f(x) = x^2 + 1$.

$$\Rightarrow f(x) = x^2 + 1 \quad \Rightarrow f'(x) = 2x \quad \Rightarrow x = \frac{p}{2} \quad \Rightarrow g(p) = 1 - \frac{p^2}{4}.$$

Example 2: $f(x) = e^{2x}$.

$$f(x) = e^{2x} \quad \Rightarrow \quad f'(x) = 2e^{2x} = p \quad \Rightarrow \quad x = \frac{1}{2} \ln \frac{p}{2}$$

$$\Rightarrow \quad g(p) = \frac{p}{2} - \frac{p}{2} \ln \frac{p}{2} .$$

$$\lhd \quad g(p) = \frac{p}{2} - \frac{p}{2} \ln \frac{p}{2} \quad \Rightarrow \quad g'(p) = -\frac{1}{2} \ln \frac{p}{2} = -x$$

$$\Rightarrow \quad p = 2e^{2x} \quad \Rightarrow \quad f(x) = e^{2x}.$$

Application to thermodynamics:

- The Legendre transform links different thermodynamic potentials to each other, each with its characteristic set of natural independent variables.
- The partial derivative of one thermodynamic potential with respect to one of its natural independent variables yields the natural independent variable of a different thermodynamic potential.

Application to classical dynamics:

- The Legendre transform links the Lagrangian $L(\{q_i\}, \{\dot{q}_i\})$ and the Hamiltonian $H(\{q_i\}, \{p_i\})$ of a classical mechanical system.
- The generalized velocities \dot{q}_i , which naturally appear in the Lagrangian, are replaced in the Hamiltonian by the canonical momenta $p_i \doteq \partial L/\partial \dot{q}_i$ as independent variables.