Blackbody radiation [tln68]

Electromagnetic radiation inside cavity in thermal equilibrium at temperature T. Grandcanonical ensemble of photons ($\epsilon = \hbar \omega = cp$, $\mathbf{p} = \hbar \mathbf{k}$, spin s = 1, bosonic, purely transverse).

Density of states: $D(\epsilon) = g \frac{4\pi V}{h^3 c^3} \epsilon^2$ with g = 2 independent polarizations. Average occupation number: $\langle n_{\epsilon} \rangle_{BE} = \frac{1}{e^{\beta \epsilon} - 1}$.

Number of photons with energies between ϵ and $\epsilon + d\epsilon$:

$$dN(\epsilon) = \langle n_{\epsilon} \rangle_{BE} D(\epsilon) d\epsilon = \frac{8\pi V \epsilon^2}{h^3 c^3} \frac{1}{e^{\beta \epsilon} - 1} d\epsilon.$$

Spectral density inside cavity: [use $dN(\epsilon) = V dn(\omega)$ and $\epsilon = \hbar \omega$]:

$$\frac{dn(\omega)}{d\omega} = \frac{\hbar}{V} \frac{dN(\epsilon)}{d\epsilon} = \frac{\omega^2}{\pi^2 c^3} \frac{1}{e^{\beta\hbar\omega} - 1}.$$

Spectral energy density inside cavity: $du = \hbar \omega dn = \rho(\omega) d\omega$.

$$\rho(\omega)d\omega = \frac{\omega^2}{\pi^2 c^3} \frac{\hbar\omega}{e^{\beta\hbar\omega} - 1} d\omega = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{e^{\beta\hbar\nu} - 1} d\nu.$$

Rate (per unit area) at which particles with (average) speed c escape from cavity through small opening [tex62]: $dN/dt = \frac{1}{4}(N/V)c$.

Spectral density of radiation: $R(\omega) = \frac{c}{4} \frac{dn(\omega)}{d\omega} = \frac{\omega^2}{4\pi^2 c^2} \frac{1}{e^{\beta\hbar\omega} - 1}$. Spectral energy density of radiation:

$$Q(\omega) = \hbar \omega R(\omega) = \frac{\omega^2}{4\pi^2 c^2} \frac{\hbar \omega}{e^{\beta \hbar \omega} - 1} \quad \text{(Planck radiation law)}.$$

High frequencies: ultrarelativistic MB particles [use $\langle n_{\epsilon} \rangle_{MB} = e^{-\beta \epsilon}$]:

$$Q(\omega) = \frac{\hbar\omega^3}{4\pi^2 c^2} e^{-\beta\omega}$$
 (Wien radiation law).

Low frequencies: equipartition law applied to electromagnetic modes:

$$Q(\omega) = \frac{k_B T \omega^2}{4\pi^2 c^2} \quad \text{(Rayleigh-Jeans radiation law)}.$$