
Superconducting transition [tln35]

Perfect conductor versus superconductor:

The (hypothetical) perfect conductor and the (real) superconductor are ma-
terials that support steady currents without any voltage source driving them.

Relation between electric field E and current density J in normal conductor:

E = ρJ.

In a perfect conductor, the resistivity vanishes below a critical temperature:
ρ(T ) = 0 at T < Tc, implying E ≡ 0 inside.

According to Faraday’s law, ∇E = −∂B/∂t, an identically vanishing electric
field E freezes the magnetic field B in the same region.

– If the perfect conductor is cooled below Tc at zero external magnetic
field and then an external magnetic field turned on, it cannot penetrate.

– If the perfect conductor is cooled below Tc in an external magnetic
field, which is then turned off, the field will stay nonzero inside.

The attribute “zero resistivity” of a perfect conductor does not describe a
thermodynamic state. The state depends on how it is arrived at.

In a superconductor the permeability vanishes below a critical temperature:
µ = 0 at T < Tc, implying B ≡ 0 inside.

The primary attribute of a superconductor is that it is a perfect diamagnet.
The attribute “zero resistivity” is secondary.

– If the superconductor is cooled below Tc at zero external magnetic field
and then an external magnetic field turned on, it cannot penetrate.

– If the superconductor is cooled below Tc in an external magnetic field,
the magnetic field will be expelled.

The attribute “zero permeability” of a superconductor does describe a ther-
modynamic state. The state is independent of how it is arrived at.
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Meissner-Ochsenfeld effect:

Thermodynamics of a type-I superconductor:

– The magnetic induction B = µrµ0H is expelled by surface supercur-
rents from the interior of the superconductor for external magnetic
fields H < Hcoex(T ).

– The function H < Hcoex(T ) is monotonically decreasing with T and
vanishes at Tc, implying that a sufficiently strong external magnetic
field destroys superconductivity at any temperature.
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Coexistence condition between the superconducting phase and the normal
conducting phase:1

G(sc)(T,H) = G(nc)(T,H).

Change of Gibbs free energy along the coexistence line:

dG(sc) = dG(nc) ⇒ − S(nc)dT −B(nc)dH = −S(sc)dT −B(sc)dH

with B(nc) = µrµ0Hcoex(T ) and B(sc) = 0.

The term B(nc)dH represent an increment of magnetic-field energy inside the
normal conductor.

Clausius-Clapeyron equation adapted to this situation:

S(nc) − S(sc) = −µrµ0Hcoex(T )

(
dH

dT

)
coex

.

Latent heat: L = T
(
S(nc) − S(sc)

)
.

1Alle extensive quantities in this application are per unit volume.
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As H increases, G(sc) stays constant but G(nc) decreases:

G(nc)(T,H)−G(nc)(T, 0) = −
∫ H

0

B(nc)dH = −1

2
µrµ0H

2.

On the coexistence line: G(nc)(T,Hcoex) = G(sc)(T,Hcoex).

⇒ G(sc)(T, 0)−G(nc)(T, 0) = −1

2
µrµ0H

2
coex(T ).

Additional empirical information is required for the derivation of more spe-
cific results, such as the latent heat and the heat capacity [tex44].

Example: empirical formula for the coexistence line:

Hcoex(T ) = H0

(
1− T 2

T 2
c

)
, 0 ≤ T ≤ Tc.
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