Mechanocaloric and Thermomechanical Effects [tln34]

Helium II is a mixture of normal fluid and superfluid ⁴He. The superfluid has no viscosity and no entropy.

Consider two vessels A and B with rigid insulating walls, separated by a porous material that allows unimpeded superfluid flow but prevents any normal-fluid flow.

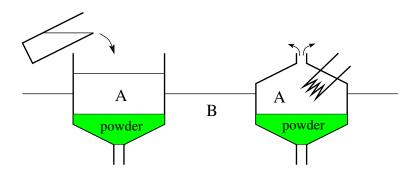
The thermal equilibrium of such a system is characterized by the following relations between intensive variables:

$$T_A \neq T_B$$
, $p_A \neq p_B$, $\mu_A(T_A, p_A) = \mu_B(T_B, p_B)$.

Consider situations in which system B is large compared to system A.

Any process in which a change of p_A or T_A is forced in the smaller system must then satisfy $\mu_A(T_A, p_A) = \mu_B(T_B, p_B) = \text{const i.e. } d\mu_A = 0.$

Gibbs-Duhem equation: $S_A dT_A - V_A dp_A + N_A d\mu_A = 0.$


$$d\mu_A = 0 \quad \Rightarrow \quad -\frac{S_A}{N_A} \, dT_A + \frac{V_A}{N_A} \, dp_A = 0 \quad \Rightarrow \ dp_A = \frac{S_A}{V_A} \, dT_A.$$

Mechanocaloric effect:

Pouring helium II into system A increases the pressure p_A and causes a superfluid flow through the porous material into system B to maintain chemical equilibrium $d\mu_A = 0$. The fraction of normal fluid in B increases. The temperature T_A rises.

Thermomechanical effect:

Heating up helium II in system A increases the temperature T_A and causes a superfluid flow of superfluid flow into system A to maintain chemical equilibrium $d\mu_A = 0$. The pressure p_a rises and may start a fountain.

