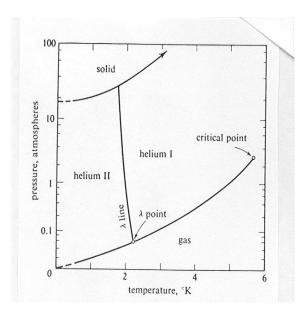
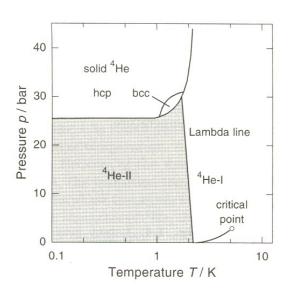
Helium liquids [tln33]

Helium has a small atomic mass and a weak interatomic interaction. This enhances quantum effects. Solid helium exists only at high pressure. Helium at low T and moderate p is a quantum liquid with peculiar features.

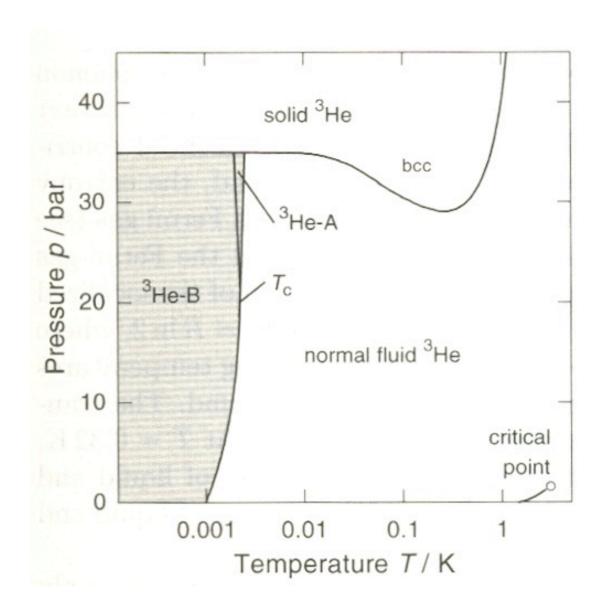
The two helium isotopes, 3 He and 4 He, are chemically similar but physically very different. The physical difference is governed by the difference in nuclear spin ($\frac{1}{2}$ versus zero).

⁴He Features


- The liquid-vapor coexistence line terminates in a critical point.
- The solid-liquid transition line is monotonic and ends at T=0 and $p \simeq 25$ atm with zero slope $(dp/dT = \Delta S/\Delta V = 0)$.
- The λ -line separates the normal fluid (He I) from the superfluid (He II) via a continuous transition.
- Each end of the λ -line is a triple point.
- ⁴He was first liquefied in 1908 by Kamerlingh Onnes (at 4.2K, 1atm).
- The λ -transition has been interpreted microscopically as the condensation of interacting bosons.


³He Features

- The relative abundance of 3 He in natural helium is 10^{-6} .
- ³He can be produced artificially from tritium (³H) via β -decay.
- $-\ ^3{\rm He}$ has not been available in large quantities until 1940 (Manhattan project).
- ³He was first liquefied in 1948.
- A superfluid transition in ³He was first observed in 1971.
- The superfluid phase in 3 He is akin to the superconducting phase. It is described by bound pairs of quasi-particles with spin $\frac{1}{2}$.
- The A-phase and the B-phase differ by the orientation of the bound pairs.
- The negative slope in the solid-liquid coexistence curve is attributable to an entropy effect of nuclear spins $(dp/dT = \Delta S/\Delta V < 0)$.


Phase diagram of ⁴He:

Phase diagram of ${}^{3}\text{He}$:

[from Enss and Hunklinger 2005]