[gex70] Laplacian operating on vector field

Consider a vector field stated in rectangular coordinates as follows:

$$\mathbf{V}_r(x, y, z) = x^2 y^2 \,\hat{\mathbf{i}} + y^3 z \,\hat{\mathbf{j}} + x^2 z^4 \,\hat{\mathbf{k}}.$$

(a) For Cartesian coordinates, the Laplacian operating on a vector is equivalent to the vector sum of Laplacian operating on each coordinate treated as a scalar.

$$\nabla^2 \mathbf{V}_r = \nabla^2 V_{rx} \,\hat{\mathbf{i}} + \nabla^2 V_{ry} \,\hat{\mathbf{j}} + \nabla^2 V_{rz} \,\hat{\mathbf{k}}.$$

Verify this relation. The Mathematica commands $Laplacian[V_r(x,y,z),\{x,y,z\},"Cartesian"]$ works for vectors and scalars. This relation does not extend to curvilinear coordinates.

- (b) Express the vector field $\mathbf{V}_r(x,y,z)$ as $V_c(\rho,\phi,z)$ in cylindrical coordinates and as $V_s(r,\theta,\phi)$ in spherical coordinates.
- (c) Use the commands,

Laplacian[
$$V_c(\rho, \phi, z), \{\rho, \phi, z\}$$
, "Cylindrical"], Laplacian[$V_s(r, \theta, \phi), \{r, \theta, \phi\}$, "Spherical"],

to calculate vectors representing the Laplacian of ${\bf V}$ in cylindrical and spherical coordinates.

(d) Show for all three sets of coordinates that the Laplacian operating on a vector (as executed by Mathematica) is equivalent to the following combination of the differential operators gradient, divergence, and curl:

$$\nabla^2 \mathbf{V} = \nabla(\nabla \cdot \mathbf{V}) - \nabla \times (\nabla \times \mathbf{V}).$$

Use the corresponding Mathematica commands for this demonstration. The right-hand side of this identity is used as the definition of Laplacian applied to vectors in curvilinear coordinates.

Solution: