[gex40] Matrix operations I: matrix multiplication

Consider the two constant matrices,

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 3\\ 4 & 5 & 6\\ -1 & 7 & -9\\ -3 & -5 & 8 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 7 & -3 & 5 & 1\\ 4 & -2 & 6 & 0\\ -1 & 2 & -8 & -9 \end{pmatrix}.$$

- (a) Calculate the product matrices $\mathbf{P} = \mathbf{A}\mathbf{B}$ and $\mathbf{Q} = \mathbf{B}\mathbf{A}$.
- (b) Express the matrix \mathbf{P} as the sum of a symmetric matrix \mathbf{P}_{s} and an antisymmetric matrix \mathbf{P}_{a} .
- (c) Do the same with matrix \mathbf{Q} .
- (d) Determine the determinants of $\mathbf{P}, \mathbf{P}_{s}, \mathbf{P}_{a}, \text{ and } \mathbf{Q}, \mathbf{Q}_{s}, \mathbf{Q}_{a}.$
- (d) Determine the determinants of \mathbf{P} , \mathbf{P}_{s} , \mathbf{P}_{a} and \mathbf{Q} , \mathbf{Q}_{s} , \mathbf{Q}_{a} . (e) Determine the traces of \mathbf{P} , \mathbf{P}_{s} , \mathbf{P}_{a} and \mathbf{Q} , \mathbf{Q}_{s} , \mathbf{Q}_{a} . (f) Verify the identity, $\mathbf{Q}^{2} = \mathbf{Q}_{s}^{2} + \mathbf{Q}_{s}\mathbf{Q}_{a} + \mathbf{Q}_{a}\mathbf{Q}_{s} + \mathbf{Q}_{a}^{2}$.

Create a Mathematica notebook to carry out these tasks.

Solution: