[gex29] Expansion of vector in non-orthonormal basis

The expansion of a vector \mathbf{r} in the orthonormal basis $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, $\hat{\mathbf{k}}$ is constructed by projections via scalar products as $\mathbf{r} = (\mathbf{r} \cdot \hat{\mathbf{i}}) \, \hat{\mathbf{i}} + (\mathbf{r} \cdot \hat{\mathbf{j}}) \, \hat{\mathbf{j}} + (\mathbf{r} \cdot \hat{\mathbf{k}}) \, \hat{\mathbf{k}}$. Show that this expansion can be generalized to a non-orthonormal basis \mathbf{a} , \mathbf{b} , \mathbf{c} as follows:

$$\mathbf{r} = (\mathbf{r} \cdot \mathbf{a}') \mathbf{a} + (\mathbf{r} \cdot \mathbf{b}') \mathbf{b} + (\mathbf{r} \cdot \mathbf{c}') \mathbf{c},$$

where

$$\mathbf{a}' = \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}, \quad \mathbf{b}' = \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}, \quad \mathbf{c}' = \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}},$$

are the reciprocal vectors as described in [gmd1].

Solution: