[gex117] Radial and azimuthal fields in a plane

Consider a radial vector field \mathbf{R} and an azimuthal vector field \mathbf{P} of uniform strength in a plane,

$$\mathbf{R} = a\,\hat{\boldsymbol{\rho}} = a\cos\phi\,\hat{\mathbf{i}} + a\sin\phi\,\hat{\mathbf{j}}, \qquad \mathbf{P} = b\,\hat{\boldsymbol{\phi}} = -b\sin\phi\,\hat{\mathbf{i}} + b\cos\phi\,\hat{\mathbf{j}},$$

with constant a, b. The last expression transforms each field to rectangular coordinates [gmd2]. The transformation between rectangular and polar coordinates,

$$x = \rho \cos \phi, \quad y = \rho \sin \phi,$$

is nonlinear and orthogonal.

(a) If we insist that $R^1 = a$, $R^2 = 0$ and $P^1 = 0$, $R^2 = b$ are the elements of contravariant rank-1 tensors in polar coordinates, what are their elements \bar{R}^1 , \bar{R}^2 and \bar{P}^1 , \bar{P}^2 in rectangular coordinates?

(b) If instead we assume that $R_1 = a$, $R_2 = 0$ and $P_1 = 0$, $R_2 = b$ are the elements of covariant rank-1 tensors in polar coordinates, what are their elements \bar{R}_1 , \bar{R}_2 and \bar{P}_1 , \bar{P}_2 in rectangular coordinates?

(c) Use The results of parts (a) and (b) to recover the original tensors via the inverse transition from rectangular to polar coordinates.

Hint: Use the elements of the Jacobian and its inverse determined in [gex112].

Solution: