Laplace Transform .

The Laplace transform in its most elementary manifestation is a linear inte-
gral operator £ applied to a real function function f(¢) of a real variable ¢,
yielding a real function F'(s) of a real variable s:

LU0} = / Cdtetf(t) = F(s).

Linearity: L{c1f1(t) + c2f2(t)} = clL{f1(t)} + c2L{ f2(1)}.

For some functions f(¢), the integral does not converge. The Laplace trans-
form does not exist in that case. For some other functions f(¢), the range of
convergence is restricted to s > sy > 0.

Sufficient existence condition: If f(t) is piecewise continuous in every finite
interval 0 < ¢t < T and is of exponential order for ¢ > T [i.e. satisfies
|f ()] < Me*], then its Laplace transform exists for s > .

Inverse Laplace transform: £7'{F(s)} = f(¢t).

The operator £7! is also linear — an attribute to be used from here on — and
it is also an integral operator — an attribute to be demonstrated later.

The Laplace transform, if it exists, is unique in the forward direction, but
not quite unique in the reverse direction. However, two functions with equal
Laplace transform can only differ in isolated points.

Laplace transforms (and, of course, their inverse) for elementary functions
and combinations thereof are available in compilations and are now readily
generated computationally.

It is useful to remember some of the most elementary cases:
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L{cos(at)} = o L{sinh(at)} = et L{cosh(at)} = 2 _ g2

For the hyperbolic functions, convergence requires s > |a].

The Laplace transform of the derivative f'(¢) is simply related to that of f(t)
via an integration by parts (see [gex62] for higher derivatives):
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Here we test the rule for derivatives with the Dirac delta function §(¢), which,
in a generalized sense, is the derivative of the Heaviside step function ©(t):
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L{O(t—a)} = ., L{o(t—a)}=e",

S

L{O'(t—a)} =sL{O(t—a)} —O(—a)=e*"—0=L{o(t —a)}.

Compilation of a few useful facts (or theorems) about the Laplace transform,

L{f(t)} = F(s), and its inverse, L7 F(s)} = f(¢).
— Translation:
L{e"f(t)} = F(s—a), LHF(s—a)}=e"f(t).
— Step function:
L{O(t—a)f(t —a) =e “F(s), L e ™F(s)} =0(t—a)f(t—a).
— Scaling:
C{f(at)} = %F (&) ¢ {1F (f)} — f(ab).
— Moments:
cler g0} = (1 Fe. £t L F b= s

— Integral:

£{/Otduf(u)} _ Fis), cl{Fis)} :/Otduf(u).

— Periodic functions:

fera =) = £y =0-c) [,
— Limit theorem:

L{f()} = F(s), 1@@ = ﬁ{@}:/:odw(u).
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Convolution theorem:

If L{f(t)} = F(s) and L{g(t)} = G(s) hold, then the convolution integral
Laplace transforms into a product of functions:

t
ctron) = e [ dusat -} = FeIGE)
0
A product of functions inverse-Laplace transforms into a convolution integral:
t
LUFEGE) = [ dufglt - )
0

The convolution integral is commutative, associative, and distributive:

feog=gof, folgeh)=(fog)oh, folg+h)=fog+foh.



