
Integral Transforms [gmd8]

The role of integral transforms as an analytic tool in the processing of func-
tions is akin to that of logarithms in the processing of numbers. The domain
of applications include differential and integral equations.

The general form of an integral transform can be cast as follows:

F (s)
.
=

∫ ∞
−∞

dtK(s, t)f(t),

B f(t): original function,

B t: original variable,

B F (s): transformed function,

B s: transformed variable,

B K(s, t) kernel of integral transform.

A unique function F (s) exists if K(s, t) and f(t) satisfy certain conditions.

– Fourier transform: K(s, t)
.
=

1√
2π

eıst.

Integral transform with the widest range of applications.

– Laplace transform: K(s, t)
.
= e−stθ(t).

Integral transform tailored for initial value problems.

– Hankel transform: K(s, t)
.
= tJν(st)θ(t).

Applications to boundary value problems in cylindrical coordinates.
Jν(x) is a Bessel function.

– Mellin transform: K(s, t)
.
= ts−1θ(t).

Applications to boundary value problems with wedge-shaped regions.

The domain of t is restricted by a vanishing kernel in some transforms. The
Laplace transform, for example, has a semi-infinite domain. Transforms on
finite domains are named finite integral transforms.

The usefulness of integral transforms relies on the existence and uniqueness
of inverse transforms. The inverse Fourier transform is has the simplest form:

f(t) =
1√
2π

∫ ∞
−∞

ds e−ıstF (s).

In general, inverse transforms are more complicated.

Further integral transforms include the Hilbert transform and the Sturm-
Liouville transform. Discrete Fourier transforms (Fourier series) and discrete
Laplace transforms (Z transforms) are also important.
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