
Complex Analysis II [gmd7-B]

Line integrals:

Consider a curve C of finite length1 in the complex plane and a complex
function f(z, z̄) = u(x, y) + ıv(x, y) which is continuous along the curve C.

Continuous functions are line-integrable and the line integral is constructed
as a limit process:

n∑
k=1

f(ζk, ζ̄k)(zk − zk−1)
n→∞−→

∫
C

dzf(z, z̄).

Here the zk are (roughly equidistant) points on the curve and the ζk are
roughly midway between zk−1 and zk.

2 The endpoints z0 and zn of the curve
may or may not coincide.

Relation to line integrals examined in vector analysis [gmd1-B]:∫
C

dzf(z, z̄) =

∫
C

(dx+ ıdy)[u(x, y) + ıv(x, y)]

=

∫
C

[dx u(x, y)− dy v(x, y)] + ı

∫
C

[dx v(x, y) + dy u(x, y)].

Parametrization of the curve:

x = φ(t), y = ψ(t) ⇒ dx = φ′(t)dt, dy = ψ′(t)dt.

⇒
∫
C

dzf(z, z̄) =

∫ tf

ti

dt
[
u
(
φ(t), ψ(t)

)
φ′(t)− v

(
φ(t), ψ(t)

)
ψ′(t)

]
+ ı

∫ tf

ti

dt
[
v
(
φ(t), ψ(t)

)
φ′(t) + u

(
φ(t), ψ(t)

)
ψ′(t)

]
.

A simple curves in the complex plane does not intersect itself. Jordan curves
are simple closed curves.3 Regions in the complex plane can be simply or
multiply connected. Simply connected regions are without holes.

All Jordan curves in a simply connected region can be shrunk to a point
without leaving it. All Jordan curves divide the complex plane into an inside
and an outside. The interior region is simply connected.

Integrating a complex function along a Jordan curve in a counterclockwise
sense is, by convention, the positive (negative) sense for the interior (exterior)
region. The relevant region is on the left (right).

1Such curves are named rectifiable.
2The necessary conditions are more relaxed.
3Jordan curves with fractal structure can have infinite length.
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Cauchy’s theorem:

Green’s theorem – a special case of Stokes’ theorem examined in vector anal-
ysis [gmd1-B] – expresses a relation between a line integral and a surface
integral involving two real functions of two coordinates.

When adapted to a complex function as worked out in [gex78] it can be
rendered as follows: ∮

C

dz F (z, z̄) = 2ı

∫
R

dxdy
∂F

∂z̄
,

where the curve C (named contour) is the boundary of region R.

Recall that for analytic functions F (z, z̄) = f(z) we have ∂F/∂z̄ ≡ 0, which
leads to Cauchy’s theorem, ∮

C

dz f(z) = 0.

Cauchy’s theorem is valid for any function f(z) which is analytic in a simply
or multiply connected region R of which C is the boundary.

The boundary of a multiply connected region has multiple parts, which must
be integrated in a consistent (positive or negative) sense.

C

(. T{

C
\<

Cauchy’s theorem remains valid (under mild and obvious restrictions) for
curves inside region R.

The converse of Cauchy’s theorem (Morera’s theorem) states that if the line
integral of a function f(z) vanishes for all curves in a simply connected region
R, then f(z) is analytic. A generalization to multiply connected R exists.

Cauchy’s theorem guarantees the existence of indefinite integrals for analytic
functions:

F (z) =

∫
dzf(z) ⇔ f(z) =

dF

dz
.
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Cauchy integrals:

Consider a function f(z) which is analytic in a region R bounded by a simple
closed curve C. It is then possible to infer from Cauchy’s theorem what is
known as the Cauchy integral,

f(a) =
1

2πı

∮
C

dz
f(z)

z − a
,

with a ∈ R and the contour integral traversed in the positive (ccw) sense.

B Cauchy’s theorem permits the replacement of C by a tiny circle of
radius ε centered at a without changing the value of the integral.

B z − a = εeıφ, dz = ıεeıφdφ.

B Convert integral:∮
C

dz
f(z)

z − a
=

∫ 2π

0

dφ
ıεeıφf(a+ εeıφ)

εeıφ
= ı

∫ 2π

0

dφf(a+ εeıφ).

B Shrink radius to zero:

ε→0−→ ı

∫ 2π

0

dφ f(a) = 2πıf(a).

Cauchy integrals also exist for the nth derivative of the function f(z):

f (n)(a) =
n!

2πı

∮
C

dz
f(z)

(z − a)n+1
: n = 0, 1, 2, . . .

Taking derivatives with respect to a on the left and (under the contour inte-
gral) on the right is an application of Leibniz’s rule.

Some consequences of Cauchy integrals are stated in the following, for the
most part without proof.

Existence of derivatives:

– If f(z) is known on C then the values of f(z) and all its derivatives are
determined at all points inside C.

– A function f(z) is analytic in R if its first derivative exists. All higher
derivatives then exist as well. No such can conclusion can be drawn for
functions of real variables.
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Cauchy inequality and Liouville theorem:

– Cauchy’s inequality : If f(z) is analytic inside a circle of radius r around
z = a and |f(z)| < M on circle, the following inequality holds:

|f (n)(a)| ≤ Mn!

rn
: n = 0, 1, 2, . . .

– Liouville’s theorem: If f(z) is analytic and bounded (|f(z)| < M <∞)
throughout the complex plane, then f(z) = const.

B If Cauchy’s inequality for n = 1 holds at all points for unlimited
radius r, we can conclude that f ′(z) ≡ 0. Hence f(z) = const.

Fundamental theorem of algebra:

Every polynomial equation,

P (z) = a0 + a1z + · · ·+ anz
n = 0 : n ≥ 1, an 6= 0,

has at least one root (in fact, exactly n roots).

B If analytic P (z) had no roots, then 1/P (z) would be bounded and
analytic, i.e. a constant, in contradiction to the premise.

B If P (z) has at least one root, z1, it can be written in the form P (z) =
(z− z1)Q(z), where Q(z) is a polynomial of degree n− 1, to which the
theorem applies as well.

This theorem is an important ingredient of a similarly named theorem of
linear ODEs [gam8].

Mean-value and maximum-modulus theorems:

– Gauss’s mean-value theorem: The mean value of an analytic function
on a circle is equal to its value at the center:

f(a) =
1

2π

∫ 2π

0

dφ f
(
a+ reıφ

)
.

B Application of Cauchy integral to circular path, z = a+ reıφ:

f(a) =
1

2πı

∫ 2π

0

dφ
ıreıφf(a+ reıφ)

reıφ
=

1

2π

∫ 2π

0

dφ f
(
a+ reıφ

)
.
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– Maximum-modulus theorem: A function f(z) which is analytic inside
and on a simple closed curve C cannot have a maximum in modulus
|f(z)| inside the curve. The maximum is always located on the curve.

B A function f(z) with a maximum modulus at a point a inside C
would violate the mean-value theorem.

B A corresponding minimum-modulus theorem exists on the condi-
tion that f(z) 6= 0 inside C.

Argument theorem and Rouché’s lemma:

– Argument theorem: If f(z) is analytic inside and on a simple closed
curve C except for a pole of order p and a zero of order n, we have

1

2πı

∮
C

dz
f ′(z)

f(z)
= n− p.

B A pole of order p [zero of order n] means that we can express f(z)
in the form,

f(z) =
F (z)

(z − zpole)p
, [f(z) = (z − zzero)nG(z)] ,

where F (z) and G(z) are analytic and nonzero inside and an C.

B The theorem (proven in [gex80]) is readily generalized to functions
with several poles and zeros of varying order. The n and p on
the right-hand side must then be replaced by sums of ni and pj
representing orders of different zeros and poles, respectively.

– Rouché’s lemma: If f(z) and g(z) are analytic inside and on a simple
closed curve C and if |g(z)| < |f(z)| on C, then adding g(z) to f(z)
does not change the number of zeros inside.

B The value of this theorem comes into play in the proof of other
theorems, e.g. the fundamental theorem of algebra.
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Poisson integrals:

– Poisson integrals for circle: For a function f(z) which is analytic both
inside and on a circle of radius R the values at |z| < R can be deter-
mined from the values at |z| = R:

f
(
reıθ
)

=
1

2π

∫ 2π

0

dφ
(R2 − r2)f(Reıφ)

R2 − 2Rr cos(θ − φ) + r2
: r < R.

For given real and imaginary parts, f(Reıφ) = u(R, θ) + ıv(R, θ):

u(r, θ) =
1

2π

∫ 2π

0

dφ
(R2 − r2)u(R, φ)

R2 − 2Rr cos(θ − φ) + r2
: r < R,

v(r, θ) =
1

2π

∫ 2π

0

dφ
(R2 − r2)v(R, φ)

R2 − 2Rr cos(θ − φ) + r2
: r < R.

B The proof of the Poisson integrals [gex81] uses the variable zinv

which is inverse to z with respect to the circle of radius R:

z = reıφ, z̄ = re−ıφ ⇒ zinv =
R2

z̄
=
R2

r
eıφ.

The points z and zinv have equal arguments. Their moduli are
related by |z|/R = R/|zinv|. If z is inside then zinv is outside.
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– Poisson integrals for half plane: For a function f(ζ) which is analytic
and bounded for =[ζ] ≥ 0 the values at =[ζ] > 0 can be determined
from the values at =[ζ] = 0 [gex83]:

f(ζ) =
1

π

∫ ∞
−∞

dx
ηf(x)

(x− ξ)2 + η2
: ζ = ξ + ıη, η > 0.

Setting f(ζ) = u(ξ, η) + ıv(ξ, η), we can write,

u(ξ, η) =
1

π

∫ ∞
−∞

dx
ηu(x, 0)

(x− ξ)2 + η2
, v(ξ, η) =

1

π

∫ ∞
−∞

dx
ηv(x, 0)

(x− ξ)2 + η2
.
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Taylor series:

Consider a simply connected region R bounded by the curve C.
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If f(z) is analytic inside R and on C, then Taylor’s theorem states that the
following series converges for all points z and a inside R:

f(z) = f(a) + f ′(a)(z − a) +
f ′′(a)

2
(z − a)2 + · · ·+ f (n)(a)

n!
(z − a)n + · · · .

B A proof (not given here) starts from Cauchy integrals for f(z) and for
the same function and its derivatives at z = a:

f(z) =
1

2πı

∮
C

dwf(w)

w − z
, f (n)(a) =

n!

2πı

∮
C

dwf(w)

(w − a)n+1
: n = 0, 1, . . .

B For points z, a inside R and w on C we write,

1

w − z
=

1

(w − a)− (z − a)
=

1

w − a

[
1

1− z−a
w−a

]

=
1

w − a

[
1 +

z − a
w − a

+

(
z − a
w − a

)2

+ · · ·+
(
z − a
w − a

)n
+ · · ·

]

=
1

w − a
+

z − a
(w − a)2

+
(z − a)2

(w − a)3
+ · · ·+ (z − a)n

(w − a)n+1
+ · · · .

B Substituting these expressions, multiplied by f(w), into the Cauchy
integrals above yields the Taylor series as stated.

B A proof must demonstrate that this series converges. This can be done
by (i) truncating the series at n, (ii) identifying the remainder term,
and (iii) showing that the remainder vanishes as n→∞.

B The Taylor series looks no different than the power series of a real
function. However, keep in mind that complex derivatives are subtle.

B In practice, the Taylor coefficients are rarely determined by contour
integrals.
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Laurent series:

Laurent’s theorem generalizes Taylor’s theo-
rem to multiply connected regions of analyt-
icity. The prototype is the annular region R
between circles C1 and C2 centered at point
a as shown. Note the sense of traversal of
both C1 and C2.
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If the function f(z) is analytic in R and on C1, C2, then Laurent’s theorem
states that the following series with given a converges for all z in R:

f(z) =
∞∑
n=0

an(z − a)n +
∞∑
n=1

a−n
(z − a)n

,

with coefficients extracted from integrals around the boundary circles:

an =
1

2πı

∮
C1

dw
f(w)

(w − a)n+1
, a−n =

1

2πı

∮
C2

dw f(w)(w − a)n−1.

The first and second sums constitute the analytic and principal parts.

B A proof (not given here) again starts from Cauchy integral for f(z),
which now involve the two boundary contours C1 and C2:

f(z) =
1

2πı

∮
C1

dwf(w)

w − z
− 1

2πı

∮
C2

dwf(w)

w − z
,

B We expand 1/(w−z) for the first integral as done for the Taylor series:

1

w − z
=

1

(w − a)− (z − a)
=

1

w − a

[
1

1− z−a
w−a

]

=
1

w − a
+

z − a
(w − a)2

+
(z − a)2

(w − a)3
+ · · ·+ (z − a)n

(w − a)n+1
+ · · · .

B We expand −1/(w − z) for the second integral differently:

− 1

w − z
=

1

(z − a)− (w − a)
=

1

z − a

[
1

1− w−a
z−a

]

=
1

z − a

[
1 +

w − a
z − a

+

(
w − a
z − a

)2

+ · · ·+
(
w − a
z − a

)n
+ · · ·

]

=
1

z − a
+

w − a
(z − a)2

+
(w − a)2

(z − a)3
+ · · ·+ (w − a)n

(z − a)n+1
+ · · · .
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B Substituting the expansions into the Cauchy integral above yields the
Laurent series as stated.

B Both circles C1 and C2 can be moved into the region R of analyticity
with no change in the contour integrals. If we join them into a circle
C we can simplify the expressions for the Laurent coefficients into

an =
1

2πı

∮
C

dw
f(w)

(w − a)n+1
: n = 0,±1,±2, . . .

B Practical ways of determining the coefficients of a Laurent series are
explored in [gex85] and [gex86].

B Laurent expansions at isolated singularities tell us the nature of that
singularity:

– in a removable singularity, all a−n vanish;

– in a pole of order n, then all a−n′ with n′ > n vanish;

– in an essential singularity, infinitely many a−n are nonzero.

B If f(z) has a singularity at z =∞, it can be analyzed as the singularity
of f(1/u) at u = 0.

B Entire functions are analytic everywhere except at z =∞.

B Meromorphic functions are analytic for |z| < ∞ except for a finite
number of poles.

B Holomorphic functions are, in essence, analytic functions (in a specified
region of the complex plane).
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Residues:

A single-valued function which has an isolated singularity at z = a and is
analytic inside and on a circle C around it can be expanded there into a
convergent Laurent series:

f(z) =
∞∑

n=−∞

an(z − a)n, an =
1

2πı

∮
C

dz
f(z)

(z − a)n+1
.

The coefficient a−1 has a special significance. It is called residue.

The residue is readily identified if we know the Laurent expansion. If the
singularity is pole of order k, the following relation holds:

a−1 = lim
z→a

1

(k − 1)!

dk−1

dzk

[
(z − a)kf(z)

]
.

The brute-force method, which works for all isolated singularities, uses

a−1 =
1

2πı

∮
C

dzf(z),

where the circle C must not surround or hit any other singularity.

Residue theorem:

The contour integral of a single-valued function which is analytic inside and
on the contour C except for isolated singularities depends only on the sum
of residues of these singularities:∮

C

dz f(z) = 2πı(a−1 + b−1 + c−1 + . . .).

The residue theorem is a useful tool for the calculation of certain definite
integrals. Here we consider the most common types of applications:

Application to rational functions:

B Consider contours in the form of semicircles of radius R in the upper-
half complex plane:

Y

r r
R

C
X

R-R.
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B Consider rational functions f(z) in which the maximum power of the
denominator exceeds that of the numerator by two.

B Split the contour integral into two parts:∮
C

dz f(z)︸ ︷︷ ︸
(a)

=

∫ ∞
−∞

dx f(x)︸ ︷︷ ︸
(b)

+ lim
R→∞

∫
Γ

dz f(z)︸ ︷︷ ︸
(c)

.

B The contour integral (a) is determined by the residues of the isolated
singularities inside the semicircle C.

B The definite integral (b) along the real axis is the quantity of interest.

B The integral (c) along the semicircular path Γ must be shown to vanish
in the limit R→∞:

|f(Reıφ)| ≤ M

Rα
, α > 1 ⇒

∣∣∣∣∫
Γ

dz f(z)

∣∣∣∣ ≤ M

Rα
πR

R→∞−→ 0.

Application to trigonometric functions:

B Consider a contour in the form of a unit circle centered at z = 0 in the
complex plane:

Y

C

{
t

X

r'

B Consider rational functions g(cos θ, sin θ).

B Transform the definite integral into a contour integral:∫ 2π

0

dθ g(cos θ, sin θ) =

∫
C

dz G(z).

B The transformation uses the ingredients,

z = eıθ, dθ = ız dθ, cos θ =
1

2

(
z + z−1

)
, sin θ =

1

2ı

(
z − z−1

)
.

B The contour integral is determined by the residues of all singularities
inside C.
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Application to Fourier transforms:

B Consider again contours in the form of semicircles of radius R in the
upper-half complex plane (as in first application).

B Consider rational functions f(z) in which the maximum power of the
denominator exceeds that of the numerator by one.

B Split the contour integral into two parts:∮
C

dz eıkzf(z)︸ ︷︷ ︸
(a)

=

∫ ∞
−∞

dx eıkxf(x)︸ ︷︷ ︸
(b)

+ lim
R→∞

∫
Γ

dz eıkzf(z)︸ ︷︷ ︸
(c)

.

B The contour integral (a) is determined by the residues of the isolated
singularities inside the semicircle C.

B The definite integral (b) along the real axis is the Fourier transform
F (k) of the function f(x).

B The integral (c) along the semicircular path Γ must be shown to vanish
in the limit R→∞.

Premise: |f(Reıθ)| ≤ M

Rα
, α > 0; use z = eıθ, dz = ıReıθdθ.

⇒
∣∣∣∣∫

Γ

dz eıkzf(z)

∣∣∣∣ =

∣∣∣∣∫ π

0

dθ eıkRe
ıθ

f(Reıθ)ıReıθ
∣∣∣∣

≤
∫ π

0

dθ
∣∣∣eıkR(cos θ+ı sin θ)f(Reıθ)ıReıθ

∣∣∣
=

∫ π

0

dθ e−kR sin θ|f(Reıθ)|R ≤ M

Rα−1

∫ π

0

dθ e−kR sin θ

=
2M

Rα−1

∫ π/2

0

dθ e−kR sin θ ≤ 2M

Rα−1

∫ π/2

0

dθ e−kR(2θ/π)

=
πM

kRα

[
1− e−kR

]
R→∞−→ 0.

12


