
Matrix Operations I [gmd6-A]

Matrices are at the core of linear algebra. Sets of linear equations need
solving in most areas of physics, most prominently in quantum mechanics.

Matrices are lists of elements (real or complex numbers) arranged in m rows
and n columns. Each element has two indices, the first stating its row and
the second its column. The order of a matrix is m× n.

A =

(
a11 a12 a13
a21 a22 a23

)
, B =

(
b11 b12 b13
b21 b22 b23

)
,

C =
(
c11 c12 c13

)
, D =

 d11
d21
d31

 , E =

 e11 e12
e21 e22
e31 e32

 ,

F =

 f11 f12 f13
f21 f22 f33
f31 f32 f33

 , G =

 g11 g12 g13
g21 g22 g33
g31 g32 g33

 .

Matrix C is a row vector and matrix D a column vector. The redundant
index of their elements is omitted if they are interpreted as vectors.

Matrices F and G are each a square matrix. Vectors and square matrices are
more important by far in physics than rectangular matrices.

Fundamental properties, operations, and relations:

– Equality : Two matrices are equal if they are of the same order (e.g. A
and B or F and G) and have identical elements.

– Addition: Only matrices of the same order can be added or subtracted.
The elements of A±B, for example, are aij ± bij.

– Scaling : Multiplying a matrix with a real or complex number λ means
multiplying each element of the matrix with that number.

– Transpose: Transposing a matrix changes its order from m×n to n×m
with the row and column indices of all elements interchanged.

E is the transpose of B if bij = eji. A row vector transposes into
a column vector and vice versa. The transpose of a transpose is the
original matrix.
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– Multiplication: Matrix multiplication is not commutative. If the first
factor has order m × p then the second factor must have order p × n
and the product matrix has order m× n.

The product AD yields a 2 × 1 column vector and the product CE
yields a 1× 2 row vector.

The product AE yields a 2× 2 square matrix whereas the product EA
yields a 3× 3 square matrix.

The matrix P = AE, for example, has elements, pij =
∑
k

aikekj.

Matrix multiplication is associative if the factors are compatible for
multiplication: (CG)D = C(GD) and (AF)E = A(FE). Powers of
square matrices are possible: F2 = FF and G3 = GGG.

Transpose of a product: (FG)T = GTFT and (AFG)T = GTFTAT .

– Symmetric matrix : HT = H. An n × n symmetric square matrix has
n(n + 1)/2 independent elements: those on the diagonal and on one
side of the diagonal.

– Antiymmetric matrix : JT = −J. An n × n antisymmetric (or skew-
symmetric) square matrix has n(n− 1)/2 independent elements: those
on one side of the diagonal. The diagonal elements are zero.

– Decomposition: Any real square matrix F can be expressed as the sum
of a symmetric and an antisymmetric matrix:

F = Fs + Fa, Fs =
1

2

(
F + FT

)
, Fa =

1

2

(
F− FT

)
.

– Complex conjugate matrix : If the elements aij of the matrix A are
complex numbers then the complex conjugate matrix Ā has complex
conjugate elements a∗ij. The conjugate transpose ĀT has elements a∗ji.

– Hermitian matrix : Complex square matrix F with F̄T = F.

– Unit matrix : Square matrix I with elements δik (Kronecker delta).

– Null matrix : Matrix 0 with of any order with all elements zero.

– Diagonal matrix : A square matrix F with zero off-diagonal elements.

– Trace: Sum of diagonal elements of a square matrix: Tr[F] =
∑
i

fii.
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Determinants:

Determinants are sums of products of elements of square matrices constructed
as shown here for matrices of orders n = 2, 3.

Det[A] =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

Det[B] =

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣
= b11b22b33 + b12b23b31 + b13b21b32 − b13b22b31 − b12b21b33 − b11b23b32.

– The number of terms is n!, which is even for n ≥ 2. Each term is the
product of n elements from different rows and columns.

– Each term can be positive, zero, negative, or complex, depending on
the value of the elements.

– Half the terms come with a plus sign and the other half with a minus
sign.

– If the first index is ordered, {1, 2, . . . , n}, and the second index an even
(odd) permutation of {1, 2, . . . , n}, then the term comes with a plus
(minus) sign.

– Even (odd) permutations require an even (odd) number of transposi-
tions of nearest-neighbor indices in the sequence.

Laplace expansion of a determinant:

– The minor associated with element hik of a square matrix H is the
determinant constructed from the elements which omit those in row i
and column j.

– The minor associated with element hik multiplied with the sign factor
(−1)i+j is named the cofactor Hij.

1 The cofactor matrix is Hij.

– The determinant of H can be reconstructed from the cofactors and
elements of one row or one column:

Det[H] =
∑
j

hijHij =
∑
i

hijHij.

1Watch out for ambiguities in the definition of minors. Some software assign the indices
of minors differently.
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Theorems about determinants (stated without proof):

– A square matrix and its transpose have the same determinant:

Det[AT ] = Det[A].

– Nonzero determinants require that each row and each column of the
matrix have at least one nonzero element.

– Switching any two rows or any two columns of the matrix changes the
sign of its determinant.

– Multiplying all elements of one row or one column by the same number
implies multiplying the determinant by that number.

– Nonzero determinants require that no two rows or columns of the ma-
trix are proportional.

– Adding the elements of one row (column) to those of a different row
(column) leaves the determinant invariant.

– Even though matrix multiplication is not commutative (FG 6= GF, in
general), both products have the same determinant, which is equal to
the product of determinants:

Det[FG] = Det[GF] = Det[F]Det[G].

– The determinant of a matrix vanishes if its rows or columns interpreted
as vector components are linearly dependent.

Inverse matrix:

A square matrix H with nonvanishing determinant has an inverse matrix,
i.e. a matrix which satisfies the relation H−1H = HH−1 = I:

H−1 =
(Hij)

T

Det[H]
,

where (Hij)
T is the transpose of the cofactor matrix introduced earlier.

The inverse of an inverse matrix is the original matrix: (A−1)−1 = A. The
inverse of a product of matrices is related to the inverse matrices as follows:

(AB)−1 = B−1A−1.

Determinant of inverse matrix: Det[A−1] =
1

Det[A]
.
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Orthogonality and unitarity:

A real square matrix A is orthogonal if its transpose is equal to its inverse:

AT = A−1 ⇒ ATA = I.

Determinant of orthogonal matrix: Det[A] = ±1.

A complex matrix B is unitary if its complex conjugate transpose (Hermitian
adjoint) is equal to its inverse:

B†
.
= B̄T = B−1 ⇒ B†B = I.

Determinant of unitary matrix: Det[B] = eıφ, φ ∈ R.

If the rows of an n × n orthogonal matrix A are thought of as a set of row
vectors a

(r)
i , then these same vectors are present as column vectors in AT .

Likewise, the set of column vectors a
(c)
i are present as row vectors in AT .

The matrix products AAT = I and ATA = I are then equivalent to the
following scalar products, which state the mutual orthonormality of all row
vectors and of all column vectors:

a
(r)
i · a

(r)
j = δij, a

(c)
i · a

(c)
j = δij.

The corresponding statement for unitary matrices involves a complex conju-
gation in the definition of the scalar product:

(b
(r)
i )∗ · b(r)

j = δij, (b
(c)
i )∗ · b(c)

j = δij.

Systems of linear equations:

The system of linear equations,

n∑
j=1

aijxj = ri : i = 1, . . . , n,

can be expressed as a matrix equation,

AX = R,

where A is the (square) matrix of (given) coefficients aij. The column vectors
X and R represent the (unknown) variables xi and the (given) nonhomo-
geneities ri. A unique solution exists if Det[A] 6= 0:

X = A−1R.

In situations with Det[A] = 0 no solution or infinitely many solutions may
exist, depending on the specifics of A and R.
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Eigenvalues and eigenvectors:

Eigenvalue equations are a frequent occurrence in physics. The prototypical
forms are

XA = λX, AY = λY,

where A is an n × n square matrix, X is a left (row) eigenvector, and Y is
a right (column) eigenvector.

The left-eigenvector equation is equivalent to the right-eigenvector problem
of the transposed matrix:

XA = λX ⇒ ATXT = λXT .

The eigenvectors Xi, Yi and eigenvalues λi are, in general, complex. From
the products,

(XiA)Yj = Xi(AYj) ⇒ λiXiYj = λjXiYj,

follows that the left and right eigenvectors belonging to different eigenvalues
must be orthogonal to each other.

The n eigenvalues λi are the roots of the characteristic polynomial,

Det[A− λI] = 0.

The eigenvalues of orthogonal or unitary matrices have unit norm. The norm
of a real (complex) number is its magnitude (modulus).

For symmetric or Hermitian matrices, the left and right eigenvalue problems
are equivalent and all eigenvalues are real. Left and right eigenvectors are
(pairwise) identical, forming an orthogonal set.

The eigenvectors of an n× n Hermitian matrix H form a unitary matrix U.
We can write

Hui = λiui, U =
(
u1 · · ·un

)
⇒ HU = UΛ,

where Λ is a diagonal matrix with elements λ1, . . . , λn along the diagonal.
Multiplying the last equation with U−1 = U† from the left demonstrates the
unitary transformation which diagonalizes a Hermitian matrix:

U−1HU = Λ.

A corresponding relation pertains to the diagonalization of a real, symmetric
matrix S by an orthogonal matrix O with the attribute O−1 = OT .
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