
Tensor Analysis I [gmd5-A]

Introduction:

In the module entitled Matrices [gmd6], we begin with lists of elements,
where the elements are (real or complex) numbers or functions. Matrices are
lists organized into arrays of n columns and m rows.

We investigate matrix specifications, attributes, and operations. We identify
n×1 matrices as column vectors and 1×m matrices as row vectors. However,
there is more to vectors than being matrices of one column or row.

In the module entitled Vector Analysis [gmd1], the focus is on vectors and
vector fields in 3D Euclidean space. It goes without saying that these quan-
tities feature prominently in the formulation of many laws of physics.

– Newton’s second law, dp/dt = F, is a relation between the derivative
of the vectors p (momentum) with respect to the scalar t (time) and
the vector F (force) in a coordinate-independent equation.

– Maxwell’s equations are four (coordinate-independent) relations be-
tween the vector fields E (electric field), B (magnetic field), J (current
density), and the scalar field ρ (charge density).

When we solve a physics problem, we apply laws of physics by using co-
ordinates adapted to the symmetry of the situation. The module entitled
Coordinate Systems [gmd2] is designed to help find the optimal choice.

Coordinate systems are not a part of nature. They are mathematical tools
employed for working out predictions extractable from laws of nature.

Therefore, laws of physics, understood to be laws of nature, must not depend
on the choice of coordinate system.

Not all coordinate-independent relations between physical quantities (includ-
ing laws of physics) can be expressed by scalars and vectors. Tensors are
natural extensions of scalars and vectors.

– Scalars are rank-zero tensors, expressible as numbers or functions in
any coordinate system.

– Vectors are rank-one tensors (columns/rows of components in any sys-
tem of coordinates). Each component is a number or a function.

– Rank-two tensors are expressible as square matrices of elements, where
each element is a number or a function.

– Rank-n tensors are arrays of elements with n indices.
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Tensors of any rank must satisfy specific conditions under coordinate trans-
formations to guarantee coordinate-independent relations between physical
quantities (including laws of physics).

– Quantities which do not change under a coordinate transformation are
named invariants or scalars. They are rank-zero tensors. Within the
context of Newtonian mechanics, time t and mass m are invariant.

– A coordinate-free visualization of vectors (rank-1 tensors) in 3D Eu-
clidean space employs arrows with length and direction. The compo-
nents of vectors in different (Cartesian) coordinate systems amount to
projections of the same arrow onto different sets of coordinate axes.

– Tensors of higher rank are harder to visualize geometrically. The need
for them in the coordinate-free formulation of relations between phys-
ical quantities can best be demonstrated for the concept of inertia.

One source of confusion in tensor analysis is the word covariant, which has
different meanings.

B The coordinate-independent formulation of a law of physics or any re-
lation between physical quantities is called covariant.

The equations of electrostatics in vector form are covariant in a limited
sense, i.e. independent under coordinate transformations which include
translations and rotations in 3D Euclidean space.

Maxwell’s equations of electrodynamic are covariant in a more general
sense, also including transformations between coordinate systems in
relative motion. The more general covariance is made explicit in 4D
Minkowski spacetime.

B A tangent vector is generated as the derivative of a vector with respect
to a scalar (e.g. velocity from position). This type of vector is named
contravariant.

A gradient vector is generated as the derivative of a scalar with respect
to a vector (e.g. gravitational field from gravitational potential). This
type of vector is named covariant.

Tensors of rank two or higher can be contravariant, covariant, or mixed.
The status may vary between indices.

Superscript indices signal contravariance and subscript indices covari-
ance. The distinction between contravariance and covariance i.e. (up-
per and lower indices) does not matter for all metrics.
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Inertia tensor:

Consider a rigid body of massm in purely translational motion. A coordinate-
independent formulation of the relation between momentum p and velocity
v (two vectors) involves the mass m (a scalar):

p = mv, pi = mvi. (1)

The two vectors have the same directions at all times, irrespective of the
forces in operation. The second version uses tensor notation.1

A purely rotational motion of the same rigid body is described by two dif-
ferent vectors: the angular momentum L and the angular velocity ω.

The relation between these two vectors is more complex. They are not paral-
lel, in general. A coordinate-independent formulation is possible and involves
the (rank-two) inertia tensor I = Iij [gex96], [gex97]:

L = I · ω, Li =
∑
j

Iijωj. (2)

The first version relates two column vectors via matrix multiplication. The
second version employs tensor notation.

The inner product in the first expression becomes a tensor contraction (sum
over the repeated index j) in the second expression.

The inertia tensor turns out to be symmetric, Iij = Iji. Hence there exists a
coordinate system for which it is diagonal: Īij = Īiδij, where the Īi are the
principal moments of inertia.

For this coordinate system, Eq. (2) reduces to Li = Īiωi. The vectors L and
ω are parallel if the rotation is about a principal axis.

Kinetic energy K is a scalar quantity. The coordinate-independent expres-
sions for translational motion and rotational motion read as follows:

Ktrans =
1

2
mv · v =

1

2

∑
i

mvivi, (3)

Ktrans =
1

2
ω · I · ω =

1

2

∑
ij

Iijωiωj. (4)

1The distinction between superscript indices and subscript indices is without significance
in this application. Also, the summation convention is set aside here.
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From matrices to tensors:

From [gmd6] we know that matrices (including row or column vectors) are
elements organized into arrays, where each element is a number or a function.

Tensors of rank one or two can be represented as matrices in any particu-
lar coordinate system, which means that all matrix attributes and matrix
operations discussed in [gmd6] are applicable to tensors.

Here we summarize the linear algebra of rank-1 and rank-2 tensors with
emphasis on tensor notation including the summation convention. Keep in
mind that there is more to tensors than their linear algebra.

– Rank-1 tensor (vector):

v
.
= vi = (v1, . . . , vn), w

.
= wi = (w1, . . . , wn). (5)

– Rank-2 tensor (matrix):

a
.
= aij =

 a11 · · · a1n
...

...
an1 · · · ann

 , b
.
= bij =

 b11 · · · b1n

...
...

bn1 · · · bnn

 ,

c
.
= ci j =

 c11 · · · c1n
...

...
cn1 · · · cnn

 . (6)

– Matrix multiplication:

a
.
= aij, b

.
= bij, p = a · b ⇔ p k

i = aijb
jk. (7)

– Identity matrix:

I = δij = δij = δ j
i = δij. (8)

– Inverse matrix (Kronecker symbol):

a
.
= aij, b

.
= bij, b = a−1

⇒ a · b = b · a = I ⇔ aijb
jk = δ k

i , bijajk = δik. (9)

– Transpose:

a
.
= aij ⇒ aT = aji, b

.
= bij ⇒ bT = bji (10)

– Symmetric [antisymmetric] matrix:

a = aT ⇔ aij = aji

[
b = −bT ⇔ bij = −bji

]
. (11)
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– Permutation symbol:

εijk··· =

{
(−1)P : no repeated indices,

0 : at least one index repeated,
(12)

where permutation {123 · · · } → {ijk · · · } involves P transpositions.

– Determinant of matrix a
.
= aij:

Det[a] = εi1···ina1i1 · · · anin . (13)

– Products between vectors u
.
= ui, v

.
= vi (with real elements):

u · v = uivi = w : scalar product, (14)

u× v = εijkujvk = wi : vector product. (15)

– Norm of a vector u
.
= ui:

||u|| =
√

u · u =
√
uiui. (16)

– Linear equations with a
.
= aij, b

.
= bi for vector x

.
= xi:

a · x = b ⇔ aijxj = bi. (17)

– Inverse matrix [gmd6]:

x = a−1 · b. (18)

– Quadratic form of vector x
.
= xi with matrix a

.
= aij:

q = xT · a · x = aijxixj = a
(s)
ij xixj, a

(s)
ij =

1

2
(aij + aji). (19)

– Linear coordinate transformation:2

x̄ = A · x ⇒ x = A−1 · x̄ .
= B · x̄. (20)

– Transformation of quadratic form Cijxixj:

xT ·C · x = (B · x̄)T ·C · (B · x) = x̄T ·BT ·C ·B︸ ︷︷ ︸
C̄

·x̄. (21)

2Tensor analysis is mostly concerned with the (passive) alias interpretation of coordinate
transformation, where x̄ and x represent the same point in different coordinate systems.
In the (active) alibi interpretation, x̄ and x are different points in one coordinate system.
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– Linear transformation of (invariant) distance:3

d(x,y)
.
= ||x− y|| =

√
(x− y)T · (x− y)

=
√

(B · x̄−B · ȳ)T · (B · x̄−B · ȳ)

=
√

(x̄− ȳ)T ·BT ·B · (x̄− ȳ)

=
√

(x̄− ȳ)T ·G · (x̄− ȳ)
.
= d(x̄, ȳ), (22)

with G = BT ·B = (A ·AT )−1.

Special case of orthogonal transformation:4 AT = A−1 ⇒ G = I.

– General coordinate transformation:

x̄ = T(x) ⇔ x̄i = Ti(x1, . . . , xn). (23)

B Passive alias interpretation: T establishes a one-on-one correspon-
dence between coordinates x̄ and x of a point P .

B Active alibi interpretation: Any point P with coordinates x in
the domain of T has its unique image Q with coordinates x̄ in the
range of T and vice versa.

3Linear coordinate transformations are called affine.
4Transformations between Cartesian, cylindrical, and spherical coordinates are orthogonal,
but not linear (affine).
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Tensors in real coordinate space:

The n-dimensional coordinate space is denoted Rn.

Cartesian (rectangular) coordinates xi, i = 1, . . . , n are defined by a specific
form of the distance relation:

d =
√
δij∆xi∆yj =

√
(x1 − y1)2 + · · · (xn − yn)2, ∆xi

.
= xi − yi. (24)

General coordinate transformation T : x̄i = x̄i(x1, . . . , xn).

Inverse transformation T −1 : xi = xi(x̄1, . . . , x̄n).

– Cylindrical coordinates x̄1
.
= ρ, x̄2

.
= φ, x̄3

.
= z in R3:

T :


ρ =

√
(x1)2 + (x2)2

φ = arctan

(
x2

x1

)
z = x3

T −1 :


x1 = ρ cosφ
x2 = ρ sinφ
x3 = z

(25)

– Spherical coordinates x̄1 = r, x̄2 = θ, x̄3 = φ in R3:

T :



r =
√

(x1)2 + (x2)2 + (x3)2

θ = arccos

(
x3√

(x1)2 + (x2)2 + (x3)2

)
φ = arctan

(
x2

x1

)

T −1 :


x1 = r sin θ cosφ
x2 = r sin θ sinφ
x3 = r cos θ

(26)

The one-on-one mapping required for a coordinate transformation T is guar-
anteed in any region of vanishing Jacobian determinant: Det[J ] 6= 0.

Jacobian matrix: J
.
=

 ∂x̄1/∂x1 · · · ∂x̄1/∂xn

...
...

∂x̄n/∂x1 · · · ∂x̄n/∂xn

.

Coordinate transformations, in general, involve two kinds of metric which
are independent of each other: the metric of the space and the metric of the
transformation (more about this later).

The metric of the transformation is a generalization of the distance function
introduced earlier for linear transformations.
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The transformations between rectangular and cylindrical or spherical coor-
dinates are nonlinear and orthogonal. They are quite artificial in a tensor
context [gex113], but important for considerations of symmetry [gmd2].

In physics applications of tensor analysis, the focus is on symmetry transfor-
mations.

Contravariance versus covariance:

Vector fields, in general, are lists of components (one row or one column),
where each component is a scalar function of the space coordinates:

V =

 V1(x
1, . . . , xn)

...
Vn(x1, . . . , xn)

 . (27)

Such vector fields are candidates for rank-1 tensors under a specific coordinate
transformation and its inverse:

T : x̄i = x̄i(x1, . . . , xn), T −1 : xi = xi(x̄1, . . . , x̄n). (28)

Tensors of rank 1 must themselves transform in one or the other of two
distinct ways under the coordinate transformation (28):

– Contravariant vector:

V̄ i = V j ∂x̄
i

∂xj
.
= V j∂jx̄

i, (29)

– Covariant vector:

Ūi = Uj
∂xj

∂x̄i
.
= Uj∂ix̄

j. (30)

B The last expression in (29) and (30) is a short-hand notation for partial
derivatives often used when tensors are ubiquitous.

B Contravariant tensors are identified by superscript indices and covariant
vectors by subscript indices.

B Tangent vectors to curves (e.g. velocity) are contravariant: xi(t)

⇒ vi(t) =
dxi

dt
⇒ v̄i =

dx̄i

dt
=
∂x̄i

∂xj
dxj

dt
= vj

∂x̄i

∂xj
. (31)
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B Gradient vectors (of scalar field) are covariant: Φ(x1, . . . , xn)

⇒ Φ̄(x̄1, . . . , x̄n) = Φ
(
x1(x̄1, . . . , x̄n), . . . , xn(x̄1, . . . , x̄n)

)
F
.
= ∇Φ ⇒ Fi =

∂Φ

∂xi
, F̄i =

∂Φ̄

∂x̄i

⇒ ∂Φ̄

∂x̄i
=
∂Φ

∂xj
∂xj

∂x̄i
⇒ F̄i = Fj

∂xj

∂x̄i
. (32)

Invariance:

Scalar quantities which do ot change under a corrdinate transformation are
called invariants. They are rank-0 tensors. The scalar field field Φ used in
(32) is an invariant by construction.

The inner product5 of a contravariant vector V i and a covariant vector Ui
(two rank-1 tensors) can be shown to be an invariant (rank-0 tensor):

V̄ i = V j ∂x̄
i

∂xj
, Ūi = Uj

∂xj

∂x̄i

⇒ Ē = V̄ iŪi = V j ∂x̄
i

∂xj
Uk

∂xk

∂x̄i
= V jUk

∂x̄i

∂xj
∂xk

∂x̄i︸ ︷︷ ︸
δ k
j

= V iUj = E. (33)

Mixed variance:

Tensors of rank 2 exist in three types:

– contravariant: T̄ ij = T kl
∂x̄i

∂xk
∂x̄j

∂xl
.

– covariant: T̄ij = Tkl
∂xk

∂x̄i
∂xl

∂x̄j
.

– mixed: T̄ ij = T kl
∂x̄i

∂xk
∂xl

∂x̄j
.

Tensors of rank 2 or higher or often characterized differently, namely of order
m = p+ q when they have p superscript indices and q subscript indices.

The tensor T ijkl, for example, has order 1 + 3.

5Tensor operations are a later topic. Inner products are like scalar products of vectors.
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Affine tensors:

Physical quantities which transform as tensors under linear coordinate trans-
formations are called affine tensors.

– Linear coordinate transformation: T : x̄i = ai jx
j with constant ai j.

– Jacobian and inverse: J =
∂x̄i

∂xj
= ai j, J−1 =

∂xi

∂x̄j
= bi j.

– Contravariant tensors: T̄ i = ai jT
j, T̄ ij = aika

j
lT

kl, . . .

– Covariant tensors: T̄i = bjiTj, T̄ij = bkib
l
jTkl, . . .

– Mixed tensors: T̄ ij = aikb
l
jT

k
l, . . ..

The position vector itself is a contravariant affine rank-1 tensor.

Cartesian tensors:

If we restrict the linear coordinate transformations to orthogonal ones, then
more more physical quantities qualify as tensors. They are Cartesian tensors.

– Jacobian and inverse: J =
∂x̄i

∂xj
= ai j, J−1 = JT =

∂xi

∂x̄j
= bi j = aji.

– Contravariant tensors: T̄ i = ai jT
j, T̄ ij = aika

j
lT

kl, . . .

– Covariant tensors: T̄i = bjiTj = ai jTj, T̄ij = bkib
l
jTkl = aika

j
lTkl, . . .

– Mixed tensors: T̄ ij = aikb
l
jT

k
l = aika

j
lT

k
l, . . ..

The distinction between contravariance and covariance becomes artificial for
Cartesian tensors. The notation is often simplified to subscripts only.
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