Bessel Functions [gmd4F]

Solutions of partial differential equations for problems with cylindrical symmetry are often expressible as Bessel functions.

Bessel equation:
$$
z^2 R''(z) + z R'(z) + (z^2 - \nu^2) R(z) = 0
$$
.
\nBessel functions of the first kind: $J_{\nu}(z) = \sum_{s=0}^{\infty} \frac{(-1)^s}{s! \Gamma(s + \nu + 1)} \left(\frac{z}{2}\right)^{2s + \nu}$

For noninteger order ν , the function $J_{\nu}(z)$ and $J_{-\nu}(z)$ are linearly independent. Their linear dependence for integer ν is manifest in the relation,¹

.

$$
J_{-\nu}(z) = (-1)^{\nu} J_{\nu}(z) \quad : \nu \in \mathbb{Z}.
$$

A solution which remains linearly independent of $J_{\nu}(x)$ is the *Neumann func*tion (Bessel function of the second kind) constructed as follows:

The divergence at $x = 0$ is logarithmic in nature.

¹This relation emerges on account of the fact that the function $\Gamma(x)$ diverges for nonpositive integers.

Modified Bessel functions:

A 90 $^{\circ}$ rotation in the complex plane converts the Bessel functions into modified versions such as the folowig:

$$
I_{\nu}(z) = i^{-\nu} J_{\nu}(iz).
$$

They are solutions of the modified Bessel equation,

$$
z2R''(z) + zR'(z) - (z2 + \nu2)R(z) = 0,
$$

and have quite different properties for real z.

Modified Bessel function of the first kind: $I_{\nu}(z) = \sum_{n=0}^{\infty}$ $s=0$ 1 $s!\Gamma(s+\nu+1)$ $\frac{z}{2}$ 2 $\big)^{2s+\nu}$. For noninteger ν , the functions $I_{\nu}(z)$ and $I_{-\nu}(z)$ are again linearly indepen-

dent, whereas for integer ν we have,

$$
I_{-\nu}(z) = I_{\nu}(z) \quad : \nu \in \mathbb{Z}.
$$

A solution which remains linearly independent of $I_{\nu}(z)$ for integer ν is the MacDonald function (modified Bessel function of the second kind):

$$
K_{\nu}(z) \doteq \frac{\pi}{2} \frac{I_{-\nu}(z) - I_{\nu}(z)}{\sin(\nu \pi)}.
$$

Useful relations:

$$
\triangleright \frac{d}{dz} [z^{\nu} J_{\nu}(z)] = z^{\nu} J_{\nu-1}(z), \quad \frac{d}{dz} [z^{-\nu} J_{\nu}(z)] = -z^{-\nu} J_{\nu+1}(z).
$$

\n
$$
\triangleright J_{\nu}'(z) = J_{\nu-1}(z) - \frac{\nu}{z} J_{\nu}(z), \quad J_{\nu}'(z) = -J_{\nu+1}(z) + \frac{\nu}{z} J_{\nu}(z).
$$

\n
$$
\triangleright J_{\nu}'(z) = \frac{1}{2} [J_{\nu-1}(z) - J_{\nu+1}(z)].
$$

\n
$$
\triangleright J_{\nu}(z) = \frac{1}{2} \nu z [J_{\nu-1}(z) + J_{\nu+1}(z)].
$$

\n
$$
\triangleright J_{0}(z) = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta e^{iz \cos \theta}.
$$

\n
$$
\triangleright |z| \ll 1: \quad J_{\nu}(z) \rightsquigarrow \frac{(z/2)^{\nu}}{\Gamma(\nu+1)} \quad : \quad \nu \neq 0, -1, -2, \dots,
$$

\npower-law rise from zero or power-law divergence.
\n
$$
\triangleright |z| \gg 1: \quad J_{\nu}(z) \rightsquigarrow \sqrt{\frac{2}{\pi z}} \cos\left(z + (\nu + \frac{1}{2})\frac{\pi}{2}\right),
$$

\nattenuated oscillation with ν -dependent phase shift.