
Elliptic Integrals and Elliptic Functions [gmd4C]

The ubiquity and importance of elliptic integrals is explained by a theorem
here stated without proof:

If R(x, y) is a rational function of x and y, and P (x) is a polynomial of degree
four or less, then the indefinite integral,

∫
dxR(x,

√
P (x)), can be expressed

as elliptic integrals.

We distinguish between incomplete and complete elliptic integrals. The for-
mer are indefinite integrals and the latter definite integrals.

Incomplete elliptic integrals:

Definitions of incomplete elliptic integrals use different arguments:

B φ: amplitude,

B k: modulus,

B α
.
= arcsin k: modular angle,

B m
.
= k2: parameter or modulus,

B a, n = −a2: parameter in two common renditions.

– First kind:

F(φ, k) = F(φ|m) = F(φ\α)
.
=

∫ φ

0

dθ√
1− k2 sin2 θ

.

– Second kind:

E(φ, k) = E(φ|m) = E(φ\α)
.
=

∫ φ

0

dθ
√

1− k2 sin2 θ.

– Third kind:

Π(φ, k, a) = Π(n;φ|m)
.
=

∫ φ

0

dθ√
1− k2 sin2 θ (1 + a2 sin2 θ)

.

Most applications in physics pertain to the modulus range 0 ≤ k ≤ 1. In
Mathematica these functions are named as follows:

EllipticF[φ,m], EllipticE[φ,m], EllipticPi[n, φ,m].

Graphs produced by Mathematica of the functions F(φ|m) and E(φ|m) versus
amplitude φ for selected values of the modulus m are shown below.
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Complete elliptic integrals:

Elliptic integrals become complete if we set φ = π/2. The commonly used
notation is, unfortunately, ambiguous. It must always be ascertained whether
the argument in use is k or m = k2.

– First kind:

K(k)
.
= F(π/2, k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

,

K(m)
.
= F(π/2|m) =

∫ π/2

0

dθ√
1−m sin2 θ

.

– Second kind:

E(k)
.
= E(π/2, k) =

∫ π/2

0

dθ
√

1− k2 sin2 θ,

E(m)
.
= E(π/2|m) =

∫ π/2

0

dθ
√

1−m sin2 θ.

– Third kind:

Π(k, a)
.
= Π(π/2, k, a) =

∫ π/2

0

dθ√
1− k2 sin2 θ (1 + a2 sin2 θ)

,

Π(n|m)
.
= Π(n; π/2|m) =

∫ π/2

0

dθ√
1−m sin2 θ (1− n sin2 θ)

.

In Mathematica these functions are named as follows:

EllipticK[m], EllipticE[m], EllipticPi[n,m].
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Graphs produced by Mathematica of the functions K(m) and E(m) versus
m are shown below. Note the analytic continuation to negative m, which
implies imaginary k.

The function K(m) diverges logarithmically at m = 1:

K(m)
m→1
 

1

2
| ln(1−m)|.

-1.0 -0.5 0.0 0.5 1.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

m

K(m)

E(m)

π /2

Power series of complete elliptic integrals of the first and second kind are
expressed in two renditions:

K(m) =
π

2

∞∑
n=0

(
−1/2
n

)2

mn =
π

2

∞∑
n=0

(
(2n)!

22n(n!)2

)2

mn

=
π

2

[
1 +

m

4
+

9m2

64
+ · · ·

]
,

E(m) =
π

2

∞∑
n=0

(
1/2
n

)(
−1/2
n

)
mn =

π

2

∞∑
n=0

(
(2n)!

22n(n!)2

)2
mn

1− 2n

=
π

2

[
1− m

4
− 3m2

64
− · · ·

]
.

Both versions of the expansion are readily recognized by Mathematica to
complete elliptic integrals.
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Jacobi elliptic functions:

Inverse functions of the incomplete elliptic integral of the first kind in the
following sense produce the Jacobi amplitude function,

F(φ|m) = u ←→ am(u|m) = φ,

and three kinds of Jacobi elliptic functions,

F(φ|m) = u ←→


sn(u|m) = sinφ,
cn(u|m) = cosφ,

dn(u|m) =
√

1−m sin2 φ.

This notation is closest to the syntax of Mathematica:

JacobiAmplitude[u,m], JacobiSN[u,m], JacobiCN[u,m], JacobiDN[u,m].

The transcription to the notation with modulus k is straightforward:

F(φ, k) = u ←→


am(u, k) = φ,
sn(u, k) = sinφ,
cn(u, k) = cosφ,

dn(u, k) =
√

1− k2 sin2 φ.

Jacobi amplitude function:

The amplitude function including the limiting cases,

lim
m→0

am(u|m) = u, lim
m→1

am(u|m) = arctan
(

tanh
u

2

)
.

is plotted below for various values of m:
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Jacobi sn, cn, and dn function:

Jacobi elliptic functions are doubly periodic generalizations of circular (trigono-
metric) and hyperbolic functions.

Circular functions are periodic for real variables and hyperbolic functions for
imaginary variables with period 2π [gmd7-A]:

sin(ıu) = ı sinhu, cos(ıu) = coshu,

sinh(ıu) = ı sinu, cosh(ıu) = cosu.

Jacobi elliptic functions are periodic for real and imaginary variables with
period 4K(m) for sn and cn and period 2K(m) for dn.
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– Circular limit for real variables:

lim
m→0

sn(u|m) = sinu, lim
m→0

cn(u|m) = cosu, lim
m→0

dn(u|m) = 1.

– Hyperbolic limit for real variables:

lim
m→1

sn(u|m) = tanhu, lim
m→1

cn(u|m) = sechu, lim
m→1

dn(u|m) = sechu.

– Circular limit for imaginary variables:

lim
m→1

sn(ıu|m) = ı tanu, lim
m→1

cn(ıu|m) = secu, lim
m→1

dn(ıu|m) = secu.

– Hyperbolic limit for imaginary variables:

lim
m→0

sn(ıu|m) = ı sinhu, lim
m→0

cn(ıu|m) = coshu, lim
m→0

dn(ıu|m) = 1.
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Generalization of sin2 u+ cos2 u = 1 and cosh2 u− sinh2 u = 1:

sn2(u|m) + cn2(u|m) = 1,

m sn2(u|m) + dn2(u|m) = 1,

dn2(u|m)−m cn2(u|m) = 1−m.

Generalization of derivatives for circular and hyperbolic functions:

d

du
am(u|m) = dn(u|m),

d

du
sn(u|m) = cn(u|m)dn(u|m),

d

du
cn(u|m) = −sn(u|m)dn(u|m),

d

du
dn(u|m) = −m sn(u|m)cn(u|m).

Relations which accommodate a modulus out of standard range:

cn(u|k2) = dn(ku, k−2),

sn(u|k2) = k−1sn(ku, k−2),

dn(u|k2) = cn(ku, k−2).

Generalization of trigonometric angle-sum relations:

sn(u+ v|m) =
sn(u|m)cn(v|m)dn(v|m) + sn(v|m)cn(u|m)dn(u|m)

1−m sn2(u|m)sn2(v|m)
,

cn(u+ v|m) =
cn(u|m)cn(v|m)− sn(u|m)dn(u|m)sn(v|m)dn(v|m)

1−m sn2(u|m)sn2(v|m)
,

dn(u+ v|m) =
dn(u|m)dn(v|m)−m sn(u|m)cn(u|m)sn(v|m)cn(u|m)

1−m sn2(u|m)sn2(v|m)
.
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Plane pendulum:

Elliptic integrals and elliptic functions feature prominently in the exact anal-
ysis of the plane pendulum.

A point mass m is constrained by a massless rod to move in a vertical circle of
radius l in a uniform gravitational field g. The dynamical variable of choice
is the angle θ(t) of the rod away from the downward orientation.

The Lagrange equation of this system,

θ̈ + ω2
0 sin θ = 0, ω0 =

√
g

l
,

is a nonlinear 2nd-order ODE whose general solution can be expressed as the
Jacobi amplitude function with two integration constants [gex145]:

θ(t) = ±2am

(
1

2

√
(2ω2

0 + c1)(t+ c2)2
∣∣∣ 4ω2

0

2ω2
0 + c1

)
.

Traditional analytic solutions start with the 1st-order ODE inferred from
the statement of energy conservation E(θ, θ̇) = const (first integral). One-
parameter solutions for oscillatory motion [gex10],

θ(t) = 2 arcsin
(
k sn(ω0t, k)

)
, 0 < k

.
=

√
E

2mgl
< 1,

and rotational motion [gex11],

θ(t) = 2 arcsin
(

sn(ω0t/κ, κ)
)
, 0 < κ

.
=

√
2mgl

E
< 1,

are thus established. The period of oscillation and rotation are

τosc =
4

ω0

K(k), τrot =
2κ

ω0

K(k).

In addition to these two types of periodic solutions there is the aperiodic
separatrix motion for E = 2mgl:

θ(t)→ 2 arcsin
(

tanh(ω0t)
)

t→∞
 π.

This exact analysis along these lines can be extended to action-angle coordi-
nates, which opens the door to the analysis of the quantum pendulum.
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Asymmetric top:

The free tumbling motion of an asymmetric top such as realized by a satellite
in orbit is governed by Euler’s equations (a topic of PHY520):

I1ω̇1 = ω2ω3(I2 − I3), I2ω̇2 = ω3ω1(I3 − I1), I3ω̇3 = ω1ω2(I1 − I2).

The three coupled nonlinear 1st-order ODEs govern the rotational motion of
this rigid body relative to a body coordinate system with origin at the center
of mass and axes in the principal directions.

The inertia tensor of any rigid body is symmetric. It can be diagonalized
by an orthogonal transformation (to principal axes). The elements Ii of the
diagonalized inertia tensor are the principal moments of inertia.

The solution of Euler’s equations yields the (instantaneous) angular velocities
ωi(t) of rotation about the principal axes. The vector ω(t) changes direction
and magnitude in the body coordinate system.

The analytic solution assumes I1 < I2 < I3 without loss of generality.

– Inverse moments of inertia: Ji
.
= 1/Ii.

– Angular momentum components:1 Li = Iiωi.

– Euler’s equations transformed:2 L̇i = LjLk(Jk − Jj).
– Periodic solution expressed as Jacobi elliptic functions:

L1(t) = a1dn(Ωt, k), L2(t) = a2sn(Ωt, k), L3(t) = a3cn(Ωt, k).

– Integration constants: Energy E, angular momentum L (magnitude),
and phase angle (here set to zero).

– Range of energy for physical solutions: J3L
2 < 2E < J1L

2.

– Amplitudes: a21 =
2E − J3L2

J1 − J3
, a22 =

J1L
2 − 2E

J1 − J2
, a23 =

J1L
2 − 2E

J1 − J3
.

– Modulus: k2 =
J2 − J3
J1 − J2

J1L
2 − 2E

2E − J3L2
.

– Frequency scale: Ω2 = (J1 − J2)(2E − J3L2).

– Period of the motion: T = 4K(k)/Ω .

The transformation of this solution from the body-coordinate system to an
inertial coordinate system involves the solution of another set of three coupled
1st-order ODEs.

1Note that the vectors L and ω are not, in general, parallel.
2The indices i, j, k run over cyclic permutations {1, 2, 3}, {2, 3, 1}, {3, 1, 2}.
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