Gamma Function ..us

The interpolation of factorials,
n!ilel-Z'--(n—l)n :neN (1)
1=1

to include real numbers, and the extension to complex numbers z € C lead
to the Gamma function,

I(z) = / dt et @)
0
which is analytic for ®[z] > 0. The recurrence relation,
D(z+1) = 21(2), 3)

follows directly from an integration by parts [gex2]. The repeated use of the
recurrence relation (3) with I'(1) = 1 establishes the relation,

'n+1)=n! : nelN (4)

The analytic continuation of (2) to R[z] < 0 can be accomplished by splitting
the integral into two parts as follows:
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The last integral converges everywhere. The divergences at non-positive
integer values of z are first-order poles.

The integral representation (2) opens the door to any number of variable
substitutions which then relate many definite integrals to Gamma functions.



The Weierstrass definition of the Gamma function in the form of an infinite
product is consistent with (2), but covers a more general range of the complex
variable:

D(=) = — Hliz/n D2 ¢ 0,—1,-2,...), (6)

n=1
where the Euler constant is
|
= 1 —_ — = — / =
7= lim (;n lnN> I'(1) = 0.57721 ... (7)
The recurrence relation (3) can also be demonstrated for (6) [gex2].

Gamma functions at half-integer values are a common occurrence:
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Double factorials for even and odd integers are defined as (2n)!! =2-4-6---2n

and (2n—1)!' =1-3-5---(2n—1). These definitions can also be interpolated
and extended to complex variables.

Stirling’s asymptotic formula is commonly used in processing combinatorial
results for use statistical mechanics of macroscopic systems (large n):

F(n+1) ~ V2mnn"e " 9)



Beta function:

A direct descendent of the Gamma function is the Beta function:

B(m,n) = /0 dra™ (1 —z)" ! = II:EZ)—S_(Z)) :m>0,n>0  (10)

It is related to definite integrals of powers of trigonometric functions com-

monly occurring in physics. The substitution, z = sin®#, for example, di-
rectly yields

w/2
B(m,n) = 2/ df[sin 6> [cos 62" 1. (11)
0

One way of establishing the relation of the Beta function to the Gamma
function takes advantage of this trigonometric representation [gex3]. The
result is

B(m,n) = ——— (12)
Two important relations between Gamma functions,

D(2)I(1 — ) =

(13)

sin(rz)’

2°* 710 (2)T (z + 1) = V/7l(22), (14)

are efficiently proven by way of the Beta function. The second relation is
known as duplication formula [gex39).

Binomial series:

Binomial series:

(1+x)“:Z(Z)x’f‘H—>” (Z)xk (15)
Binomial coefficients:

a — F(CL + 1) a—n n'
<k>_F(k+1)r(a—k+1) T KM=k (16)

The divergent I'(n — k + 1) for £ > n terminates the series to a finite sum.



Incomplete Gamma functions:

The incomplete Gamma functions,
[(a,z) = / dte” 't y(a,2) = / dte™ o (17)
z 0

are complementary to each other: I'(a,z) + v(a,z) = I'(z). I'(a,2) has a
branch cut discontinuity along the negative real axis in the z-plane.

The graphs below show the real part (blue) and the imaginary part (red) of
the complete (left) and incomplete (right) Gamma functions for an interval
of z that cuts across the negative real axis.
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['(z) is smooth along any path which avoids non-positve integer values on
the real axis. By contrast, I'(a, z) has a discontinuous imaginary part and a
real part with a discontinuity in slope.

The relation between incomplete and complete Gamma functions is subtle.
It is the parameter a of the former which becomes the variable of the latter:

il_r)% [(a,z) = Zlggo v(a,z) =T(a). (18)
The power series,
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= z2* —— 1 a=0 19
Y(a,z) =z Zn!(n+a) a=0, (19)

n=0

can be obtained by expanding e~! under the defining integral.

With repeated integrations by part applied to the defining expression, we
obtain the (non-convergent) asymptotic expansion,

PR e 1
F(CL, Z) :)9 F(CL)Z 16 Z m, (20)
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which turns into a finite sum fora =n+1=1,2,3,...
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Polygamma functions:

The basic Polygamma function is the Digamma function, also known under
the name psi function (here considered for real arguments):

() = % Inl'(z) : xz#0,-1,-2,... (21)

The series representation,

1 1
+1 x+4+n

W(@) = — + :0 L } 2> 0, (22)

can be extracted from the Weierstrass product representation (6) of I'(z).
The recurrence relation (3) for I'(z) transcribes as follows [gex92]:

W+ 1) = oz + ~. (23)
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The integral representation of ¢ (z) derived from that of I'(z) reads

Yla+1) = /Ooo dt (6; - ef__ml) , (24)

where the separate integral of each term would diverge. The asymptotic
series (with Bernoulli numbers Bsy,) reads

Y +1) =X 1nx+——%2:: (25)

This expansion is the source of Stirling’s asymptotic formula (9).
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Higher-order Polygamma functions are inferred from the Digamma function
by differentiation:

m+1
P (z) = T Inl(z) @ m=12... (26)
The series representation derived from (25) reads [gex93]
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M (z) = (—1) rng—(nm)m+1 c x>0, m=12,.... (27
Zeta function:
The Riemann Zeta function,
= S ; 1 28
C<Q) - — E - q > ( )

is related to Polygamma functions, which is most evident in the following
relation to their series representation (27):
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The function ((¢q) has many applications in physics. It is also important in
number theory, as is manifest, for example, in the following representation
featuring prime numbers:

C(q) = H (1 — P‘q> - : P € prime numbers. (30)
P
C(q)(1—2—q) 14294304 (2—q+4—q+6—q+...>

=143 9459477+

Ca)(1-21) (1=377) <1437 457047704
— (302
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Asymptotic behavior:

(g) =3 142 (31)
100
10
1 ¢(q)-1
04000 TN
2-q RS
0.010+
0.001 :
2 4 6 8 10
q

Integral representation:
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Riemann formula:
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A straightforward generalization of the integral representation of ((n) leads
to the polylogarithmic functions Li,(2).

These functions play key roles in the quantum statistics of nonrelativistic
bosons and fermions.



Polylogarithmic functions:

Bose-Einstein functions are polylogarithm functions:

1 © dx ! gy %
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Fermi-Dirac functions are the same polylogarithm functions in a different
range of the variable z (now renamed —z):

1 * dy ™!
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Series expansion:
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Recurrence relation:
2fu(2) = fua(z), n2>1 (43)

Asymptotic expansion for z > 1:
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