Partial Differential Equations I $_{\text{gmd11-A}}$

A partial differential equation (PDE) involves derivatives with respect to more than one independent variable of a multi-variable function.

Common notation in PDEs for partial derivatives of a function $u(x, y, z, t)$:

$$
u_x \doteq \frac{\partial u}{\partial x}, \quad u_t \doteq \frac{\partial u}{\partial t}, \quad u_{xx} \doteq \frac{\partial^2 u}{\partial x^2}, \quad u_{xy} \doteq \frac{\partial^2 u}{\partial x \partial y}, \quad \dots \tag{1}
$$

Classification:

PDEs are primarily classified according to three criteria: (i) order, (ii) linearity, and (iii) homogeneity. Criterion (iii) only applies if (ii) is satisfied.

One important secondary classification applies to linear, second-order PDEs for functions of two variables such as $u(x, y)$:

$$
\underbrace{au_{xx} + bu_{xy} + cu_{yy}}_{\text{principal part}} + du_x + eu_y + fu = g,\tag{2}
$$

where a, b, c, d, e, f, g are either constants or functions of x, y.

The nature of solutions is dominated by the principal part of the PDE, specifically by the sign of the discriminant,

$$
b^2 - 4ac.\t\t(3)
$$

Three types of solutions:

- $\triangleright b^2 4ac > 0$: hyperbolic,
- $\triangleright b^2 4ac = 0$: parabolic,
- \triangleright $b^2 4ac < 0$: elliptic.

If a, b, c are not all constant, then the type of solution for the same PDE may vary from region to region.

Well-known PDEs of each type are the following:

- the wave equation, $u_{tt} = c^2 u_{xx}$, is hyperbolic,
- the diffusion equation, $u_t = Du_{xx}$, is parabolic,
- the Laplace equation, $u_{xx} + u_{yy} = 0$, is elliptic.

Structure of general solution according to type:

A simple demonstration is possible for a PDE with principal part only and constant parameters a, b, c :

$$
au_{xx} + bu_{xy} + cu_{yy} = 0, \quad a \neq 0.
$$
 (4)

The goal is to explore the structure of the general solution (unrestricted by subsidiary conditions).

Step #1: Linear variable transformation:

$$
\triangleright u(x, y) = \bar{u}(r, s) \text{ with } r = \alpha x + \beta y \text{ and } s = \gamma x + \delta y.
$$

\n
$$
\triangleright u_x = \alpha \bar{u}_r + \gamma \bar{u}_s, \quad u_y = \beta \bar{u}_r + \delta \bar{u}_s.
$$

\n
$$
\triangleright u_{xx} = \alpha^2 \bar{u}_{rr} + 2\alpha \gamma \bar{u}_{rs} + \gamma^2 \bar{u}_{ss}, \quad u_{yy} = \beta^2 \bar{u}_{rr} + 2\beta \delta \bar{u}_{rs} + \delta^2 \bar{u}_{ss},
$$

\n
$$
u_{xy} = \alpha \beta \bar{u}_{rr} + (\alpha \delta + \beta \gamma) \bar{u}_{rs} + \gamma \delta \bar{u}_{ss}.
$$

 \triangleright Transformed PDE:

$$
\left(a\alpha^2 + b\alpha\beta + c\beta^2\right)\bar{u}_{rr} + \left(a\gamma^2 + b\gamma\delta + c\delta^2\right)\bar{u}_{ss} + \left[2a\alpha\gamma + b(\alpha\delta + \beta\gamma) + 2c\beta\delta\right]\bar{u}_{rs} = 0.
$$
 (5)

Step#2: Simplify (5) by special choice of α , β , γ , δ :

- \triangleright Set $\beta = \delta = 1$.
- \triangleright Choose α, γ such that coefficients of \bar{u}_{rr} and \bar{u}_{ss} in (5) vanish.

$$
a\alpha^2 + b\alpha + c = 0, \quad a\gamma^2 + b\gamma + c = 0,
$$

\n
$$
\alpha = \frac{1}{2a} \left[-b + \sqrt{b^2 - 4ac} \right], \quad \gamma = \frac{1}{2a} \left[-b - \sqrt{b^2 - 4ac} \right].
$$
 (6)

 \triangleright Simplified PDE:

$$
a\alpha^2 + b\alpha\beta + c\beta^2 = a\gamma^2 + b\gamma\delta + c\delta^2 = 0,
$$

$$
2a\alpha\gamma + b(\alpha\delta + \beta\gamma) + 2c\beta\delta = \frac{4ac - b^2}{a}.
$$

$$
\Rightarrow \frac{4ac - b^2}{a} \bar{u}_{rs} = 0. \tag{7}
$$

Step#3: Examine general solution for transformed variables:

 \triangleright Case of non-degenerate solutions (6): $b^2 \neq 4ac$.

$$
\bar{u}_{rs} = 0 \Rightarrow \bar{u}(r,s) = F(r) + G(s). \tag{8}
$$

 \triangleright Case of degenerate solutions (6): $b^2 = 4ac$.

Modified transformation: $\alpha = -b/2a$, $\beta = \gamma = 1$, $\delta = 0$

$$
\Rightarrow a\alpha^2 + b\alpha\beta + c\beta^2 = 2a\alpha\gamma + b(\alpha\delta + \beta\gamma) + 2c\beta\delta = 0,
$$

\n
$$
a\gamma^2 + b\gamma\delta + c\delta^2 = a \neq 0
$$

\n
$$
\Rightarrow a\bar{u}_{ss} = 0.
$$

$$
\bar{u}_{ss} = 0 \Rightarrow \bar{u}(r,s) = F(r) + sG(s). \tag{9}
$$

Step#4: Return to original variables:

 \triangleright Hyperbolic case $(b^2 > 4ac)$:

$$
u(x,y) = F(\alpha x + y) + G(\gamma x + y), \quad \alpha, \gamma \in \mathbb{R}.
$$
 (10)

 \triangleright Elliptic case $(b^2 < 4ac)$:

$$
u(x,y) = F(\alpha x + y) + G(\gamma x + y), \quad \alpha = \gamma^* \in \mathbb{C}.\tag{11}
$$

 \triangleright Parabolic case $(b^2 = 4ac)$:

$$
u(x,y) = F(\alpha x + y) + xG(\alpha x), \quad \alpha \in \mathbb{R}.
$$
 (12)

Hyperbolic case applied to wave equation, $u_{tt} = v^2 u_{xx}$:

► Traveling-wave solution: $a = 1, b = 0, c = -\frac{1}{4}$ $\frac{1}{v^2}$ \Rightarrow $\alpha = \frac{1}{v}$ \overline{v} $, \gamma = -\frac{1}{\sqrt{2}}$ \overline{v} .

$$
\Rightarrow u(x,t) = F(x - vt) + F(x + vt). \tag{13}
$$

Elliptic solution applied Laplace equation, $u_{xx} + u_{yy} = 0$:

 \triangleright Conjugate-functions solution: $a = c = 1, b = 0 \Rightarrow \alpha = i, \gamma = -i$.

$$
\Rightarrow u(x,t) = F(y+ix) + F(y-ix). \tag{14}
$$

Subsidiary conditions:

Whereas the general solution of an ODE contains arbitrary constants, the general solution of a PDE contains arbitray functions.

Subsidiary conditions fall into two categories:

- Boundary conditions involve a function h_S given at the surface S of the region Ω in which a solution is sought.
	- \triangleright Dirichlet: $u(x, y) = h_S$ on S,
	- \triangleright Neumann: $\partial u/\partial n = h_S$ on S,
	- \triangleright Robin: $\alpha u + \beta(\partial u/\partial n) = h_S$ on S.
- Initial conditions involve a function h_{Ω} given at $t = 0$ throughout the region Ω in which a solution is sought.

 \triangleright Cauchy: $u = h_{\Omega}$ in Ω at $t = 0$.

The choice of subsidiary conditions is more delicate for PDEs than for ODEs. Well-posed PDE problems must satisfy three (nontrivial) conditions:

- \triangleright a solution must exist,
- \triangleright the solution must be unique,
- \triangleright the solution must depend continuously on parameters of the PDE and on the subsidiary conditions.

A PDE problem is ill-posed if not all three conditions are met. Overspecified problems tend to have no solution, whereas the solution of underspecified problems tends to be not unique.