
Linear ODEs [gam8]

General structure of ODE and solution:

Consider an nth-order linear ODE for the function y(x) in the form,

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = R(x).

Homogeneous ODEs have R(x) ≡ 0. Under mild assumptions, a unique so-
lution exists which satisfies the following conditions or equivalent conditions:

y(x0) = y0, y′(x0) = y′0, . . . , y(n−1)(x0) = y
(n−1)
0 .

The following operator notation is sometimes being used, where Di are linear
differential operators:

Di .=
dn

dxi
, Φ(D)

.
=

n∑
i=0

ai(x)Dn−i. Φ(D)y = R(x).

Fundamental theorem of linear ODEs : The general solution of the inhomo-
geneous ODE can be stated as the general solution of the homogenous ODE
(named complementary solution) plus any particular solution of the inhomo-
geneous ODE:

y(x) = Yc(x) + Yp(x).

The difference between any solutions Yp(x) is a solution included in Yc(x) –
a consequence of the superposition principle.

The complementary solution includes n integration constants and can be
expressed as a linear combination of the form,

Yc(x) =
n∑
i=1

ciyi(x).

The linear independence of the functions yi(x) which make up the comple-
mentary solution is guaranteed by a nonvanishing Wronskian determinant :

W (y1, . . . , yn)
.
=

∣∣∣∣∣∣∣∣∣
y1(x) y2(x) · · · yn(x)
y′1(x) y′2(x) · · · y′n(x)

...
...

...
...

y
(n−1)
1 (x) y

(n−1)
2 (x) · · · y

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
The solution of a linear ODE entails significant simplifications for cases with
constant coefficients ai.
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Homogeneous ODE with constant coefficients:

[a0D
n + a1D

n−1 + · · ·+ an−1D + an]y = 0.

Exponential ansatz for complementary solution: y(x) = emx.

Substitution produces characteristic polynomial with roots m1, . . . ,mn:

a0m
n + a1m

n−1 + · · ·+ an−1m+ am = 0

⇒ a0(m−m1)(m−m2) . . . (m−mn) = 0

– Case #1 : All roots are real.

y(x) = c1e
m1x + c2e

m2x + · · ·+ cne
mnx.

– Case #2 : Some roots are complex-conjugate pairs.
Consider the case of one pair with m1 = a+ ıb and m2 = a− ıb.

y(x) = [c1 cos(bx) + c2 sin(bx)]eax + · · · .

– Case #3 : Some roots a repeated [gex110].
Consider the case of real root m1 occurring k times.

y(x) = [c1 + c2x+ · · ·+ ckx
k−1]em1x + · · · .

Linearly damped harmonic oscillator:

The three cases identified in the previous section are all realized in this
dynamical system.

System specifications: mass m, spring constant k, attenuation γ.

Equation of motion for position x(t): mẍ = −kx− γẋ.

Damping parameter: β
.
=

γ

2m
.

Characteristic frequency: ω0
.
=

√
k

m
.

Linear homogeneous ODE: ẍ+ 2βẋ+ ω2
0x = 0.

Exponential ansatz: x(t) = ert.

Characteristic polynomial: r2 + 2βr + ω2
0 = 0.

Roots: r± = −β ±
√
β2 − ω2

0.

Initial conditions: x(0) = x0, ẋ(0) = ẋ0.
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Case #1: overdamped motion: Ω1
.
=
√
β2 − ω2

0 > 0.

– Linearly independent solutions: er+t, er−t.

– General solution: x(t) =
(
A+e

Ω1t + A−e
−Ω1t

)
e−βt.

– Amplitudes: A+ =
ẋ0 − r−x0

2Ω1

, A− =
r+x0 − ẋ0

2Ω1

.

Case #2: underdamped motion: ω1
.
=
√
ω2

0 − β2 > 0.

– Linearly independent solutions: er+t, er−t.

– General solution:

x(t) = (A cosω1t+B sinω1t) e
−βt = D cos(ω1t− δ)e−βt.

– Amplitudes and phase:

A = x0, B =
ẋ0 + βx0

ω1

, D =
√
A2 +B2, δ = arctan

B

A
.

Case #3: critically damped motion: ω2
0 = β2, r = −β.

– Linearly independent solutions: ert, tert.

– General solution: x(t) = (A0 + A1t)e
−βt.

– Amplitudes: A0 = x0, A1 = ẋ0 + βx0.

t

x(t)

overdamped

critically damped

underdamped t

x

(t)

overdamped
critically damped

underdamped

The plots for position [left] and velocity [right] pertain to initial conditions
x0 = 1, ẋ0 = 0.
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Particular solution of inhomogeneous ODE:

The presenc of an inhomogeneity R(x) in a linear ODE with constant coeffi-
cients call for a particular solution Yp(x) to be determined and added to the
complementary solution Yc(x) investigated earlier.

Here we discuss two methods. The second is a generalization of the first.

– The method of undetermined constant parameters is applicable if R(x)
is from a selective catalog of functions.

– The method of variation of parameters is applicable more generally for
differentiable functions R(x).

Method of undetermined constant parameters:

For inhomogeneity function R(x) from the list on the left, the particular
solution has a corresponding structure as shown in the list on the right for
specific values (to be determined) of the constant parameters.

few o,ePt

f eospn + g sinpr acospfi + b sinpr

fofik*frrk-r*... *frc aofik * apk-1 + " ' * ,irc

eqr(f cos pn * g sin gr) tur(a eos pn + b sin pr)

eq*(fork * ffik-l + . . . * fx) eat(asnk * apk- 1 + . . . * ox)

(fofik*...*ficospfi
+ (osrtt + . . . * gx,) sin pro

(oo*k + .. . * on) cospfr

+ (bofik +... *bn) sinpr

eq*(fonk*... + fy) cospr

+ eqr(gofrk a . . . + gp) sin p*
sat(asxk + ' . . + ay) eospr

+ sar(bsmk + . . . + bp) sin pr

[image from Spiegel 1971]

If R(x) is a linear combination of entries shown on the left, then the trial
function for the particular solution is a corresponding linear combination of
entries on the right.

If a term suggested by the appropriate entry on the right already appears
in Yc(x), then that term must be multiplied by powers of the independent
variable x until it becomes distinctive (for reasons explored in [gex110]).
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Method of variation of parameters:
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