Linear ODEs ...q

General structure of ODE and solution:

Consider an n*™-order linear ODE for the function y(z) in the form,

d" a1t d
ao(x)—y + a1 (x) dx"—:g + an_l(ac)—y + a,(x)y = R(x).

dx

Homogeneous ODEs have R(x) = 0. Under mild assumptions, a unique so-
lution exists which satisfies the following conditions or equivalent conditions:

n— n—1
y(zo) = yo, ¥(zo) =vhy -..r Yy V(o) =Y.

The following operator notation is sometimes being used, where D are linear
differential operators:

n

Dl = T ®(D)= Zai(x)D"_i. d(D)y = R(z).

Fundamental theorem of linear ODFEs: The general solution of the inhomo-
geneous ODE can be stated as the general solution of the homogenous ODE
(named complementary solution) plus any particular solution of the inhomo-
geneous ODE:

y(r) = Ye(z) + Yy ().

The difference between any solutions Y),(z) is a solution included in Y (z) -
a consequence of the superposition principle.

The complementary solution includes n integration constants and can be

expressed as a linear combination of the form,

n

Ye(z) = Z ciyi(x).

i=1

The linear independence of the functions y;(x) which make up the comple-
mentary solution is guaranteed by a nonvanishing Wronskian determinant:

0w
Wy, yn) = ylzx yQEr 5 yngx
W) @) W)

The solution of a linear ODE entails significant simplifications for cases with
constant coefficients a;.



Homogeneous ODE with constant coefficients:

[agD" + a; D" " + - 4+ an_1D + a,)y = 0.
Exponential ansatz for complementary solution: y(x) = e™*.
Substitution produces characteristic polynomial with roots my, ..., my,:

aom™ +am™ 4+ +a,_im+a,=0

= ap(m —my)(m —mg)...(m—my) =0

— Case #1: All roots are real.
y(x) = 1™ 4 0™ 4 - - 4 e,

— Case #2: Some roots are complex-conjugate pairs.
Consider the case of one pair with m; = a + b and my = a — 1b.

y(x) = [cq cos(bx) + ¢y sin(bx)]e®™ + - -

— Case #3: Some roots a repeated [gex110].
Consider the case of real root m; occurring k times.

y(z) = [c1 + o + -+ - + gzt ™ 4 -

Linearly damped harmonic oscillator:

The three cases identified in the previous section are all realized in this
dynamical system.

System specifications: mass m, spring constant k, attenuation +.

Equation of motion for position x(t): mi& = —kx — vi.
Damping parameter: [ = l.
2m

[ k
Characteristic frequency: wy =1/ —.
m

Linear homogeneous ODE: & + 287 + wix = 0.
Exponential ansatz: x(t) = e".

Characteristic polynomial: 72 4+ 28r + wZ = 0.

Roots: ry = —f +£1/5% — wi.

Initial conditions: z(0) = xo, 2(0) = .

2



Case #1: overdamped motion: €y = /(%2 — w2 > 0.
— Linearly independent solutions: e"+!, e~
— General solution: z(t) = (Ape™! + A_e=™t) et
. ryTo — it'o

j?o —Tr_2o
-0 4 =

— Amplitudes: A, = IO 20

Case #2: underdamped motion: w; = y/wi — 52 > 0.

— Linearly independent solutions: e’+!, e"-*

— General solution:
z(t) = (Acoswit + Bsinwt) e = D cos(wit — §)e .

— Amplitudes and phase:

i B
A =z, B:m, D =A%+ B2, 6:arctanz.
w1

Case #3: critically damped motion: wg =34 r=-p.

— Linearly independent solutions: e, te™.
— General solution: x(t) = (Ag + Ajt)e P
— Amplitudes: Ay =9, A; = 29+ Bxo.
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The plots for position [left] and velocity [right] pertain to initial conditions
g = 1, I.‘() =0.



Particular solution of inhomogeneous ODE:

The presenc of an inhomogeneity R(z) in a linear ODE with constant coeffi-
cients call for a particular solution Y,(z) to be determined and added to the
complementary solution Y.(x) investigated earlier.

Here we discuss two methods. The second is a generalization of the first.

— The method of undetermined constant parameters is applicable if R(x)
is from a selective catalog of functions.

— The method of variation of parameters is applicable more generally for
differentiable functions R(z).

Method of undetermined constant parameters:

For inhomogeneity function R(z) from the list on the left, the particular
solution has a corresponding structure as shown in the list on the right for
specific values (to be determined) of the constant parameters.

ferx aers
f cos px + g sin px a cos px + b sin px
Thak ts Foacls Eols == E okt ajs Lk - e thdy
¢%%(f cos px + g sin qx) €%%(a cos px + b sin px)
e (foxk + fyak=1 4 - + f,) €% (aoak + a k=14 -+ + @)
(fox* =+ «++ + fy) cos px (@ox® + - -+ + ay) cos px
+ (gox*+ -« +gi) sinpfc + (boxk + - -+ + by) sin px
eV (fo @S+ 2ot fi ) cos pa €% (agak + - -« + a;) cos px
+ e%%(ggxk + - - - + gy) sin px + e3%(bgxk + - - - + b)) sin px

[image from Spiegel 1971]

If R(x) is a linear combination of entries shown on the left, then the trial
function for the particular solution is a corresponding linear combination of
entries on the right.

If a term suggested by the appropriate entry on the right already appears
in Y.(z), then that term must be multiplied by powers of the independent
variable z until it becomes distinctive (for reasons explored in [gex110]).



Method of variation of parameters:



