Conjugate Functions in Electrostatics $_{\text{gam1}}$

The electrostatic potential $\Phi(x, y)$ in the space outside a configuration of conductors with continuous translational symmetry (in z-direction) is a solution of the Laplace equation,

$$
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0.
$$

The attributes of analytic functions and harmonic functions as discussed in [gmd7] can be exploited to find solutions of electrostatic problems.

Pick an analytic function $f(z) = g(x, y) + ih(x, y)$ of which either $g(x, y)$ or $h(x, y)$ satisfies the boundary conditions of a given electrostatic problem.

Both functions are guaranteed to be harmonic, i.e. to satisfy the Laplace equation separately:

$$
\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 0, \quad \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = 0.
$$

If it is $g(x, y)$ which satisfies the boundary condition we set $\Phi(x, y) = g(x, y)$. Equipotential lines are then represented by curves $q(x, y) = \text{const.}$

All curves $h(x, y) = \text{const}$ are orthogonal to equipotential lines at points of intersection [gmd7]. Therefore, they represent electrostatic field lines.

The role of the functions g and h is interchanged if it $h(x, y)$ which satisfies the electrostatic boundary conditions.

Application to plane surface with charge density σ on yz -plane $(x < 0$ is inside the conductor and $x > 0$ outside):

- Analytic function: $F(z) = cz = cx + icy$.
- Harmonic functions: $g = cx$, $h = cy$.
- Analyticity check: $\frac{\partial g}{\partial x}$ $rac{\partial g}{\partial x} =$ ∂h $\frac{\partial u}{\partial y} = c$, $\frac{\partial g}{\partial y} = -\frac{\partial h}{\partial x}$ $\frac{\partial n}{\partial x} = 0.$
- Equipotential lines: $g = \text{const}$ $\Rightarrow x = \text{const}.$
- Field lines: $h = \text{const}$ ⇒ $y = \text{const}$.
- Electric field: $\mathbf{E} =$ σ ϵ_0 $\hat{\mathbf{i}} = -\nabla \Phi.$
- Electric potential: $\Phi = -\frac{\sigma}{\sigma}$ ϵ_0 x.

Application to charged cylindrical surface of radius r_0 centered at z-axis with charge density σ (shown in cross section).

- Analytic function: $F(z) = c \ln z = c \ln r + ic\phi$, $z = re^{i\phi}$.
- Real part: $g = c \ln r$, $r = \sqrt{x^2 + y^2}$.
- Imaginary part: $h = c\phi$, $\phi = \arctan \theta$ \hat{y} \overline{x} .
- Analyticity check: $\frac{\partial g}{\partial x}$ $rac{\partial g}{\partial x} =$ ∂h $\frac{\partial n}{\partial y}$, $\frac{\partial g}{\partial y} = -\frac{\partial h}{\partial x}$ $\frac{\partial}{\partial x}$.

$$
\frac{\partial g}{\partial x} = \frac{dg}{dr} \frac{\partial r}{\partial x} = \frac{cx}{x^2 + y^2}, \quad \frac{\partial h}{\partial y} = \frac{dh}{d\phi} \frac{\partial \phi}{\partial y} = \frac{cx}{x^2 + y^2}.
$$

$$
\frac{\partial g}{\partial y} = \frac{dg}{dr} \frac{\partial r}{\partial y} = \frac{cy}{x^2 + y^2}, \quad \frac{\partial h}{\partial x} = \frac{dh}{d\phi} \frac{\partial \phi}{\partial x} = -\frac{cy}{x^2 + y^2}.
$$

- Equipotential lines: $g = \text{const}$ ⇒ $r = \text{const}$ (concentric circles).
- Field lines: $h =$ const ⇒ $φ =$ const (radial lines).
- Electric potential: $\Phi = \Phi_0 \ln(r/r_0)$.

- Electric field:
$$
\mathbf{E} = -\nabla \Phi = -\frac{\Phi_0}{r}\hat{\mathbf{r}} = \frac{\lambda}{2\pi\epsilon_0 r}\hat{\mathbf{r}} = \frac{\sigma r_0}{\epsilon_0 r}\hat{\mathbf{r}}, \quad \lambda = 2\pi r_0 \sigma.
$$

- Field strength at
$$
r = r_0
$$
: $E_0 = \frac{\sigma}{\epsilon_0} = -\frac{\Phi_0}{r_0}$ $\Rightarrow \Phi_0 = -\frac{\sigma r_0}{\epsilon_0}$.

Further applications:

- Conducting plates intersecting at right angle [gex57].
- Electric potential and field at edge of large conducting plate [gex58].
- Fringe electric potential and field of parallel plates [gex59].