[lex98] Fresnel equation for TE wave

Consider a TE plane wave refracted and reflected at the interface between dielectrics as shown. The boundary conditions for the normal and tangential fields produce, as shown in [lln17], the two relations for the electric-field amplitudes,

$$
E_{0}+E_{0}^{\prime \prime}=E_{0}^{\prime}, \quad \frac{n_{1}}{\mu_{1}}\left(E_{0}-E_{0}^{\prime \prime}\right) \cos \theta=\frac{n_{2}}{\mu_{2}} E_{0}^{\prime} \cos \theta^{\prime}
$$

(a) Show that these relations determine the amplitude ratios,

$$
\frac{E_{0}^{\prime}}{E_{0}}=\frac{2 \mu_{2} n_{1} \cos \theta}{\mu_{2} n_{1} \cos \theta+\mu_{1} n_{2} \cos \theta^{\prime}}, \quad \frac{E_{0}^{\prime \prime}}{E_{0}}=\frac{\mu_{2} n_{1} \cos \theta-\mu_{1} n_{2} \cos \theta^{\prime}}{\mu_{2} n_{1} \cos \theta+\mu_{1} n_{2} \cos \theta^{\prime}} .
$$

(b) Infer from the second relation, for the situations with $\mu_{1}=\mu_{2}=\mu_{0}$, the simplified version (Fresnel equation),

$$
\frac{E_{0}^{\prime \prime}}{E_{0}}=\frac{\sin \left(\theta^{\prime}-\theta\right)}{\sin \left(\theta^{\prime}+\theta\right)}
$$

Solution:

