[lex95] Fields between moving capacitor plates I

Two oppositely charged conducting plates are placed in a coordinate system as shown. In the rest frame \mathcal{F} of the plates, there is a uniform electric field $\mathbf{E} = E_0 \hat{\mathbf{k}}$ between the plates. The Lorentz transformation predicts that in the frame \mathcal{F}' , which moves with velocity $\mathbf{v} = v \hat{\mathbf{i}}$ relative to \mathcal{F} , the electric field is stronger and there is also a magnetic field:

$$\mathbf{E}' = \gamma E_0 \,\hat{\mathbf{k}}, \quad \mathbf{B}' = rac{\gamma v}{c^2} \, E_0 \,\hat{\mathbf{j}}, \quad \gamma \doteq rac{1}{\sqrt{1 - v^2/c^2}}.$$

(a) Explain the change in electric field as due to the contracted plate areas when viewed from \mathcal{F}' . (b) Explain the appearance of the magnetic field as an effect of the moving charges on the plates (with contracted areas) when viewed from \mathcal{F}' .

(c) Show that the net force per area between the plates, which is purely electric when viewed from \mathcal{F}' , but a combination of electric and magnetic when viewed from \mathcal{F}' , is invariant under a change of reference frame, as demanded by the principle of relativity.

Solution: