## [lex9] Electric dipole field

Given the dipole term in the multipole expansion of the electric potential $\Phi(\mathbf{x})$, derive the following expression for the electric dipole field $\mathbf{E}(\mathbf{x})$ :

$$
\Phi(\mathbf{x})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}, \quad \Rightarrow \mathbf{E}(\mathbf{x})=\frac{1}{4 \pi \epsilon_{0}} \frac{3 \hat{\mathbf{r}}(\mathbf{p} \cdot \hat{\mathbf{r}})-\mathbf{p}}{r^{3}}
$$

where $\mathbf{p}$ is the electric dipole moment and $\hat{\mathbf{r}}=\mathbf{x} / r$ the unit vector pointing from the dipole (assumed localized) to the field point.
(a) Work out the solution by hand.
(b) Work out the solution in a Mathematica notebook. A vector is List. Its magnitude is Norm. The dot product is Dot, The gradient is Grad.
(c) What is the relative orientation of $\mathbf{E}$ and $\mathbf{p}$ (i) if $\hat{\mathbf{r}}$ and $\mathbf{p}$ are parallel, (ii) if $\hat{\mathbf{r}}$ and $\mathbf{p}$ are perpendicular, (iii) if $\hat{\mathbf{r}}$ and $\mathbf{p}$ are antiparallel.

## Solution:

