[lex86] Mutual inductance of solenoid and ring

Consider a very long solenoid of radius a and a winding wire with n turns per unit length positioned at the center of a conducting ring of radius b and oriented perpendicular to the plane of the ring as shown.
(a) Calculate the mutual inductance $M_{r s} \doteq \Phi_{B}^{(r s)} / I_{s}$, where $\Phi_{B}^{(r s)}$ is the magnetic flux through the ring caused by a current I_{s} in the solenoid.
(b) Calculate the mutual inductance $M_{s r} \doteq \Phi_{B}^{(s r)} / I_{r}$, where $\Phi_{B}^{(s r)}$ is the sum of magnetic flux through all turns of the solenoid caused by a current I_{r} in the ring.

Assumptions: (i) the radius of the ring is much larger than the radius of the solenoid, $b \gg a$; (ii) the length l of the solenoid is much larger than the radius of the ring, $l \gg b$. Consistent approximations will maintain the exact symmetry, $M_{r s}=M_{s r}$.

Solution:

