[lex83] Maxwell's equations for the scalar and vector potentials

Starting from Maxwell's equation for the electric and magnetic fields,

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}, \quad \nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
$$

and using the relations between fields and potentials,

$$
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

(a) derive the following Maxwell's equations for the scalar and vector potential,

$$
\nabla^{2} \Phi+\frac{\partial}{\partial t}(\nabla \cdot \mathbf{A})=-\frac{\rho}{\epsilon_{0}}, \quad \nabla^{2} \mathbf{A}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}-\nabla\left(\nabla \cdot \mathbf{A}+\mu_{0} \epsilon_{0} \frac{\partial \Phi}{\partial t}\right)=-\mu_{0} \mathbf{J}
$$

(b) demonstrate the invariance of these equations under the gauge transformation,

$$
\mathbf{A}^{\prime}=\mathbf{A}+\nabla f, \quad \Phi^{\prime}=\Phi-\frac{\partial f}{\partial t}
$$

Solution:

