[lex8] Electric field of parabolic line charge

Place a parabolic line charge of infinite length and with uniform line charge density λ into the xy-plane such that $y = ax^2$ with a > 0.

(a) Show that the electric field at position y_0 on the y-axis is given by the integral expression,

$$E_y = 2k\lambda \int_0^\infty dx \frac{\sqrt{1+4a^2x^2(y_0-ax^2)}}{[x^2+(y_0-ax^2)^2]^{3/2}}, \qquad k \doteq \frac{1}{4\pi\epsilon_0}$$

(b) Evaluate the integral analytically in the limit a = 0 for arbitrary positions of the field point y_0 . This represents the field generated by an infinitely long, straight line.

(c) Evaluate the integral analytically for arbitrary a > 0 and the field point at the focus, $y_0 = 1/4a$, of the parabola.

(d) Evaluate the integral numerically for a = 0.5, 1, 2 and a large range of field points. Investigate the (power-law) decay law for large positive and negative values of y_0 .

(e) Plot the results for E_y vs y_0 in such ways that all salient features are demonstrated.

Solution: