[lex8] Electric field of parabolic line charge

Place a parabolic line charge of infinite length and with uniform line charge density λ into the $x y$-plane such that $y=a x^{2}$ with $a>0$.
(a) Show that the electric field at position y_{0} on the y-axis is given by the integral expression,

$$
E_{y}=2 k \lambda \int_{0}^{\infty} d x \frac{\sqrt{1+4 a^{2} x^{2}}\left(y_{0}-a x^{2}\right)}{\left[x^{2}+\left(y_{0}-a x^{2}\right)^{2}\right]^{3 / 2}}, \quad k \doteq \frac{1}{4 \pi \epsilon_{0}}
$$

(b) Evaluate the integral analytically in the limit $a=0$ for arbitrary positions of the field point y_{0}. This represents the field generated by an infinitely long, straight line.
(c) Evaluate the integral analytically for arbitrary $a>0$ and the field point at the focus, $y_{0}=1 / 4 a$, of the parabola.
(d) Evaluate the integral numerically for $a=0.5,1,2$ and a large range of field points. Investigate the (power-law) decay law for large positive and negative values of y_{0}.
(e) Plot the results for E_{y} vs y_{0} in such ways that all salient features are demonstrated.

Solution:

