[lex73] Magnetic shielding inside a magnetizable spherical shell

A solid spherical shell of inner radius R_{i} and outer radius R_{o}, made of magnetic material with relative permeability κ_{m}, is placed in a region of uniform applied magnetic field $\mathbf{B}_{\mathrm{ap}}=B_{0} \hat{\mathbf{k}}$. We use spherical coordinates with azimuthal symmetry. The irrotational nature of the magnetic field in this situation can be described by the scalar potential $\Phi_{m}(\mathbf{x})$. A solution of the Laplace equation, $\nabla^{2} \Phi_{\mathrm{m}}=0$, that satisfies the symmetry in place and the boundary conditions at $r=0$ and $r \rightarrow \infty$, as worked out in [lex72], must be of the form,

$$
\Phi_{\mathrm{m}}^{(\mathrm{int})}(r, \theta)=\operatorname{ar} \cos \theta, \quad \Phi_{\mathrm{m}}^{(\mathrm{mid})}(r, \theta)=c r \cos \theta+\frac{d \cos \theta}{r^{2}}, \quad \Phi_{\mathrm{m}}^{(\mathrm{ext})}(r, \theta)=-\frac{B_{0}}{\mu_{0}} r \cos \theta+\frac{b \cos \theta}{r^{2}}
$$

Determine the constants a, b, c, d by imposing relevant boundary conditions at the two interfaces. The emerging coefficient a then characterizes the shielding of the interior region from the applied external magnetic field. Determine the ratio $B_{\text {int }} / B_{0}$ as a function of $\kappa_{\mathrm{m}}, R_{\mathrm{i}}, R_{\mathrm{o}}$.

Solution:

