[lex72] Solid sphere placed in a uniform magnetic field

A solid sphere of radius R made of magnetic material with relative permeability κ_{m} is placed in a region of uniform applied magnetic field $\mathbf{B}_{\mathrm{ap}}=B_{0} \hat{\mathbf{k}}$. We use spherical coordinates with azimuthal symmetry. The irrotational nature of the magnetic field in this situation can be described by the scalar potential $\Phi_{\mathrm{m}}(\mathbf{x})$. Solutions of the Laplace equation, $\nabla^{2} \Phi_{\mathrm{m}}=0$, that satisfy the symmetry in place are of the form,

$$
\Phi_{\mathrm{m}}^{(\mathrm{int})}(r, \theta)=a r \cos \theta+\frac{b \cos \theta}{r^{2}}, \quad \Phi_{\mathrm{m}}^{(\mathrm{ext})}(r, \theta)=c r \cos \theta+\frac{d \cos \theta}{r^{2}}
$$

as previously used in [lex30] for a dielectric sphere in an electic field.
Determine the constants a, b, c, d by imposing all relevant boundary conditions. Then determine the fields \mathbf{H} and \mathbf{B} in the interior and exterior regions. Work out the limits $\kappa_{\mathrm{m}} \rightarrow 1$ (non-magnetizable material) and $\kappa_{\mathrm{m}} \rightarrow 0$ (perfect diamagnet).

Solution:

