[lex70] Magnetized material with cavities of different shapes

Consider a magnetic material characterized by a uniform magnetic susceptibility. It has three cavities in the shape of (i) a disk, (ii) a needle, and (iii) a sphere as shown in cross section. The vector relations,

$$
\mathbf{B}_{1}=\mu_{0}\left(\mathbf{H}_{1}+\mathbf{M}_{1}\right), \quad \mathbf{B}_{0}=\mu_{0} \mathbf{H}_{0}
$$

hold inside the magnetic material and inside the cavities, respectively. Find $\Delta \mathbf{B} \doteq \mathbf{B}_{0}-\mathbf{B}_{1}$ in units $\mu_{0} \mathbf{M}_{1}$ and $\Delta \mathbf{H} \doteq \mathbf{H}_{0}-\mathbf{H}_{1}$ in units \mathbf{M}_{1} for all three cases.
Hint: Use boundary conditions for cases (i) and (ii). Use a result of [lex68] for case (iii).

Solution:

