[lex66] Current-carrying magnetic slab

A slab of conducting and magnetic material of infinite lateral extensions (in x and y directions) and width $2 a$ is centered at the $x y$-plane as shown in cross section. The magnetic suceptibility is χ_{m} and the density of free current is

$$
\mathbf{J}_{\mathrm{f}}=J_{0} \frac{z}{a} \hat{\mathbf{i}} \quad:|z| \leq a
$$

(a) Use the magnetostatic relations $\nabla \cdot \mathbf{H}=0$ and $\nabla \times \mathbf{H}=\mathbf{J}_{\mathrm{f}}$ for the magnetic field plus simplifications due to symmetry to determine the nine partial derivatives of H_{x}, H_{y}, H_{z} with respect to x, y, z.
(b) Establish a chain of sound reasoning which concludes that \mathbf{H} vanishes identically at $|z|>a$.
(c) Determine \mathbf{H} at $|z|<a$ via integration of the result from part (a).
(d) Determine the bound bulk current density \mathbf{J}_{b} inside the slab and the bound surface current density \mathbf{K}_{b} at $z= \pm a$.

Solution:

