[lex63] Magnetic moment of rotating charged disk

A disk of radius R is uniformly charged with charge density $\sigma>0$ and rotates with angular velocity ω about its axis as shown. The rotating charge represents a current and thus produces a magnetic dipole moment \mathbf{m} directed out of the plane.
(a) Express its magnitude m as a function of ω, R, and Q (the total charge on the disk).
(b) If the disk has uniform mass density and total mass M, find the ratio m / L of the magnetic moment and the angular momentum, also known as gyromagnetic ratio.
Hint: For part (a) split the disk into concentric rings. The current in each ring is the charge divided by the period of rotation.

Solution:

