[lex62] Velocity selector

A particle with mass m and charge q traveling with velocity \mathbf{v} enters a region of crossed electric and magnetic fields as shown. There it experiences an electric force $\mathbf{F}_{E}=q \mathbf{E}$ and a magnetic force $\mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B}$. The path of the particle stays in the $x y$-plane. Start from the coupled linear ODEs for the velocity components,

$$
\begin{equation*}
\frac{d v_{x}}{d t}=\frac{q B}{m} v_{y}, \quad \frac{d v_{y}}{d t}=\frac{q E}{m}-\frac{q B}{m} v_{x} \tag{1}
\end{equation*}
$$

inferred in [lex50] from the equation of motion, $\mathbf{F}_{E}+\mathbf{F}_{B}=m d \mathbf{v} / d t$.
(a) Confirm that Eqs. (1) are satisfied by the trial functions,

$$
\begin{equation*}
v_{x}(t)=a \cos (\omega t)+b \sin (\omega t)+\frac{E}{B}, \quad v_{y}(t)=b \cos (\omega t)-a \sin (\omega t) \tag{2}
\end{equation*}
$$

for $\omega=q B / m$ (cyclotron frequency) and arbitrary amplitudes a, b.
(b) Identify the values of a, b that produce a straight horizontal path for the particle traveling with constant velocity $\mathbf{v}=v_{0} \hat{\mathbf{i}}$. What is the value of v_{0} ?
(c) Consider a particle launched with speed $v_{0}+\Delta v$, where Δv can be positive or negative. Identify the values of a, b for this case.
(d) Integrate the solutions (2) for a, b as determined in (c) to produce the components $x(t), y(t)$ of the instantaneous position of the particle.
(e) Determine the lateral deviation Δy of the path at $x=d$. Assume that that $\Delta / v_{0} \ll 1$ and $\omega d \ll 1$ for this part, which simplifies the analysis and should produce the result,

$$
\begin{equation*}
\frac{\Delta y}{d}=-\frac{\Delta v}{v_{0}} \frac{\omega d}{v_{0}} . \tag{3}
\end{equation*}
$$

This setup can be used extract from a beam of particles with a broad distribution of speed one that has a very narrow distribution if we block all particles from moving past $x=d$ except those whose paths deviate from a straight line by less than $\pm \Delta y$.

Solution:

