[lex6] Electric field of a charged rod III

Here we apply the general expressions for the electric field generated by a uniformly charged rod derived in [lex5] to a specific purpose. We place the rod (of length L and line charge density λ) on the x axis with its center at the origin. We pick field point along a circle of radius a > L/2 in the xy-plane.

(a) Find analytic expressions for the functions $E_x(\phi)$ and $E_y(\phi)$, where the angle ϕ trace the field point on the circle starting on the positive x-axis and moving counterclockwise.

(b) Plot E_x and E_y versus ϕ in the same diagram and comment on the symmetries of both curves. (c) Plot the magnitude $E = \sqrt{E_x^2 + E_y^2}$ versus ϕ and again comment on the symmetry of the curve.

(d) The electric field is, in general, not radial. We can write $\tan \phi = y/x$ for the radial direction at a given field point on the circle and $\tan \psi = E_y/E_x$ for the direction of the electric field at that field point. Plot the deviation from the radial orientation, $\psi - \phi$, versus ϕ and comment on the symmetry of the result.

Solution: