[lex6] Electric field of a charged rod III

Here we apply the general expressions for the electric field generated by a uniformly charged rod derived in [lex5] to a specific purpose. We place the rod (of length L and line charge density λ) on the x axis with its center at the origin. We pick field point along a circle of radius $a>L / 2$ in the $x y$-plane.
(a) Find analytic expressions for the functions $E_{x}(\phi)$ and $E_{y}(\phi)$, where the angle ϕ trace the field point on the circle starting on the positive x-axis and moving counterclockwise.
(b) Plot E_{x} and E_{y} versus ϕ in the same diagram and comment on the symmetries of both curves.
(c) Plot the magnitude $E=\sqrt{E_{x}^{2}+E_{y}^{2}}$ versus ϕ and again comment on the symmetry of the curve.
(d) The electric field is, in general, not radial. We can write $\tan \phi=y / x$ for the radial direction at a given field point on the circle and $\tan \psi=E_{y} / E_{x}$ for the direction of the electric field at that field point. Plot the deviation from the radial orientation, $\psi-\phi$, versus ϕ and comment on the symmetry of the result.

Solution:

