[lex59] Magnetic field of a circular current I

A thin circular wire of radius R is placed in the $x y$-plane centered at the z-axis and carries a steady current I in the direction shown.
(a) Use the Biot-Savart law and symmetry considerations to show that the electric field at point on the z-axis is

$$
\mathbf{B}=\frac{\mu_{0} I}{2} \frac{R^{2}}{\left(z^{2}+R^{2}\right)^{3 / 2}} \hat{\mathbf{k}}
$$

(b) Simplify the expression for the case $z=0$, represents the field at the center of the circle.
(c) Simplify the expression by expansion for the case $z \gg R$, representing the field generated by a magnetic dipole $\mathbf{m}=I \pi R^{2} \hat{\mathbf{k}}$.

Solution:

