[lex54] Insertion of conducting slab between capacitor plates II

A parallel-plate capacitor with plates of area A and a gap of width d is connected to battery that supplies a voltage V_0 . The capacitance is $C_0 = \epsilon_0 A/d$ and the charge is $Q_0 = V_0 C_0$. The electric field between the plates is $E_0 = V_0/d$ and the energy stored in the device is $U_0 = \frac{1}{2}C_0V_0^2$.

Now a conducting slab of cross-sectional area A and width d/3 is inserted symmetrically between the plates as shown. Find the charge Q on the plates, the electric field E in the two gaps, the capacitance C of the modified device, and the energy U stored in it, in units of Q_0 , E_0 , C_0 , and U_0 , respectively.

Solution: