[lex51] Magnetic field of straight current segment I

Consider a current-carrying wire that includes a straight segment. The goal here is to calculate the magnetic field \mathbf{B} generated by that segment at an arbitrary field point. Without loss of generality we can choose a Cartesian coordinate system such that the segment is on the x-axis with current I flowing in the positive direction and the field point positioned on the positive y-axis as shown. The magnetic field is then directed in positive z-direction (out of the plane), dictated by the cross-product $\hat{\mathbf{i}} \times \hat{\mathbf{r}}$ between current direction and distance vector from source point to field point. Show that the magnitude of the field is given by the expression,

$$
B=\frac{\mu_{0}}{4 \pi} \frac{I}{R}\left(\sin \theta_{2}-\sin \theta_{1}\right), \quad L=R\left(\tan \theta_{2}-\tan \theta_{1}\right)
$$

where L is the length of the segment. The angles θ_{1}, θ_{2} are from the vertical to the lines connecting the rear end and the front end of the segment, respectively, with the field point. The y-coordinate of the field point is $R>0$. If the segment extends over the entire x-axis, we have $\theta_{1}=-\pi / 2$ and $\theta_{2}=+\pi / 2$, which which recovers the familiar expression,

$$
B=\frac{\mu_{0} I}{2 \pi R}
$$

Hint: Start from the Biot-Savart law and perform a variable transformation from x to θ, which simplifies the integral.

Solution:

