[lex50] Motion in crossed electric and magnetic fields

In a region of uniform electric field $\mathbf{E}=E \hat{\mathbf{j}}$ and uniform magnetic field $\mathbf{B}=B \hat{\mathbf{k}}$ a particle of mass m and charge q is released from rest at $\mathbf{x}=0$.
(a) Express Newton's second law, $\mathbf{F}=m \mathbf{a}$, with the Lorentz force, $\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})$, as a set of three $1^{\text {st }}$-order ODEs for the velocity components v_{x}, v_{y}, v_{z}.
(b) Show that these coupled linear ODEs are satisfied by the trial functions,

$$
v_{i}(t)=a_{i} \cos (\omega t)+b_{i} \sin (\omega t)+c_{i}, \quad i=x, y, z
$$

if the following conditions are imposed on the parameters a_{i}, b_{i}, ω :

$$
\omega=\frac{q B}{m}, \quad a_{x}=-b_{y}, \quad a_{y}=b_{x}, \quad c_{x}=\frac{E}{B}, \quad c_{y}=0, \quad a_{z}=b_{z}=0
$$

(c) Impose the initial condition, $\mathbf{v}(0)=0$ to fully determine all parameters and write explicit expressions for $v_{x}(t), v_{y}(t), v_{z}(t)$.
(d) Integrate these expressions to infer explicit expressions for $x(t), y(t), z(t)$ using the initial condition $\mathbf{x}(0)=0$. The path of the particle turns out to be a cycloid in the $x y$-plane.

Solution:

