[lex41] Electric flux through cube and net charge inside

Consider a cube with sides of length 2 m positioned and oriented in a coordinate system as shown in the presence of an electric field,

$$
\mathbf{E}(\mathbf{x})=a \hat{\mathbf{i}}+b y \hat{\mathbf{j}}+c z^{2} \hat{\mathbf{k}} ; \quad a=4 \mathrm{~V} / \mathrm{m}, \quad b=3 \mathrm{~V} / \mathrm{m}^{2}, \quad c=2 \mathrm{~V} / \mathrm{m}^{3}
$$

(a) Show that \mathbf{E} is irrotational, thus qualifies as an electrostatic field.
(b) Calculate the net charge $Q_{\text {in }}$ inside the cube via the integral version of Gauss's law,

$$
\oint_{S} d \mathbf{a} \cdot \mathbf{E}=\frac{Q_{\text {in }}}{\epsilon_{0}}, \quad \epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}
$$

from the electric flux Φ_{E} through the surface of the cube (integral over closed surface). (c) Calculate $Q_{\text {in }}$ from the differential version of Gauss's law,

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

as a volume integral of the charge density ρ inside the cube.

Solution:

